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SUMMARY
Receiver-based extension strategy introduces additional de-
grees of freedom to full waveform inversion, in order to im-
prove the fit between the observed and calculated data at
early iterations. This helps circumvent the cycle-skipping
phenomenon. The additional degrees of freedom are the re-
ceiver positions. In this study, we make this relocalization
time-dependent, meaning that the receiver positions vary along
time. The resulting mathematical problem is a two nested-
loops minimization, where the outer loop is the conventional
FWI loop to update the subsurface mechanical parameters, and
the inner loop aims at finding the optimal time-dependent vir-
tual receivers positions. This inner loop problem is heavily
nonlinear and non-convex. Finding the global minimum is
therefore a challenging task, and we use for that a computa-
tional intelligence technique, the Particle Swarm Optimization
(PSO). PSO is a heuristic optimization method relying on an
ensemble of realizations of model parameters called particles.
This makes it possible to thoroughly explore the search space
with few iterations. By taking a close look on the inner loop
problem, we introduce an improvement to our PSO implemen-
tation by judiciously choosing the starting inner loop param-
eters. Finally, we show a numerical case study using a North
Sea exploration scale 2D synthetic model.

INTRODUCTION
Full waveform inversion is a PDE-constrained optimization
problem, that aims at improving the fit between observed and
synthetic datasets iteratively, using gradient-based optimiza-
tion approaches. The synthetic data are computed using a wave
equation operator, which is nonlinear with respect to the model
parameters, causing the misfit function to be non-convex. This
gives rise to a main challenge, cycle-skipping (Virieux and Op-
erto, 2009), where the optimization converges to a local mini-
mum matching the wrong phases with each other. This occurs
when the time shift between the observed and the calculated
data is larger than half the dominant period. Many strategies
have been developed to overcome this issue. We focus in this
study on a receiver-based extension strategy, first introduced
by Métivier and Brossier (2022). This strategy is based on the
introduction of additional degrees of freedom, the receivers po-
sitions, in order to fit the data when the model estimate is poor
at the early FWI iterations. This extended problem is solved
using a two nested loops strategy, where the outer loop solves
for the model parameters, while the inner loop focuses on the
optimal virtual receivers positions using a global optimization
scheme. The initial method of Métivier and Brossier (2022)
has been extended by Benziane et al. (2023) with the introduc-
tion of a time-dependent receiver position, in order to improve
the fit for multiple arrivals. Introducing the time-dependence
requires adding more degrees of freedom to the inner prob-
lem, making the use of global optimization very challenging.

A practical solution would therefore be to use stochastic ap-
proaches such as simulated annealing (Ingber, 1993), as shown
in Benziane et al. (2023). However, the inner problem is heav-
ily nonlinear, and finding a solution remains a challenging task.
In this study we investigate an alternative heuristic optimiza-
tion approach, Particle Swarm Optimizer (PSO), for the in-
ner loop problem. We take a close look on the inner loop
misfit and we test the method on a 2D North Sea exploration
scale model. We show how this strategy improves resilience to
cycle-skipping, while being directly applicable to time domain-
FWI with manageable extra cost.

THEORY
The receiver extension strategy introduces additional degrees
of freedom to the FWI problem, at the receiver position, allow-
ing the receiver to move as a function of acquisition time. This
helps eliminate the kinematic mismatch between the observed
and the calculated data. The receiver extension problem is
solved using a two nested loops strategy, where the inner loop
finds the optimal virtual receiver positions (a time-dependent
position). The outer loop is the conventional FWI loop, which
updates the model parameters based on the amplitude discrep-
ancy. We write the receiver extension problem as

min
m,∆x

f (m,∆x) =
1
2

Nr∑
r=1

||dcal,r[m,∆xr]−dobs,r||2D

+
α

2

Nr∑
r=1

||dobs,r||22
L2 ||∆xr||22

+
β

2

Nr∑
r=1

||dobs,r||22
V 2

max
||∆ẋr||22.

(1)

We aim at minimizing the bivariate misfit function (equation
1), where m are the model mechanical parameters, ∆xr(t) are
the receiver position corrections, while r is the receiver index.
The first term in equation 1 is the data fit term, which is the L2
norm of the data residuals in the data space D. The calculated
data are obtained by{

dcal,r[m,∆x](x, t) = u[m](xr +∆xr(t), t)
A(m)u(x, t) = b(x, t)

, (2)

where ∆x(t) are the optimal receiver position corrections. The
calculated data are extracted at the virtual receivers positions
(xr +∆xr(t)) from the wavefield u, which is computed using
the wave equation operator A(m) in equation 2, with b(x, t)
being the source time function. The second term in the right
hand side of equation 1 penalizes the receiver position correc-
tion, in order to prevent it from being too large and to force it
to become small along iterations. L is the maximum allowed
receiver relocalization distance, and α is a tuning parameter,
for weighting this penalty term. Similarly, the third term in
the right hand side of equation 1 penalizes the receiver speed
(the first order derivative with respect to time of the receiver
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relocalization ∆ẋ(t)). Vmax is the maximum allowed receiver
speed, and β is a tuning parameter.

In the following, the receiver extension problem is presented
for one source for clarity, the extension to multiple sources is
obtained by summation over the sources (receiver relocaliza-
tion values are computed for each source separately).

In order to obtain the time-dependent receiver position, we use
a piecewise polynomial parametrization, given by

∆xr,k(t) =
Nℓ+1∑
i=1

aiℓ
Nℓ
i (t), (3)

where ℓNℓ(t) are Lagrange basis functions of order Nℓ. The
time vector is divided into segments, each of which contains
one Lagrange polynomial. Equation 3 shows the receiver po-
sition correction for a segment k as a function of the acquisition
time. The inner loop aims at finding the optimal ai values, that
define the time-dependent virtual receivers positions. In Ben-
ziane et al. (2023), we have shown that it can be beneficial to
make the virtual receiver move in two dimensions in the phys-
ical space for 2D FWI problems, while keeping the inner loop
problem as 1D problem. We do this by allowing the virtual
receiver to move along a predefined (x,z) trajectory.

INNER LOOP OPTIMIZATION
The inner loop problem consists in obtaining a time dependent
extended receivers positions, using a polynomial parametriza-
tion. At each FWI iteration, a portion of the incident wave-
field (decimated in time) is kept in memory, in order to be
able to extract synthetic data at the extended receiver positions
at every time step, without any recomputation. We illustrate
this extraction at the time-dependent receiver position in Fig-
ure 1: the calculated data (green line plot) are extracted from
the calculated incident wavefield (shown in gray-scale in Fig-
ure 1b) at the time-dependent virtual receiver position (white
line plot), which is parametrized with two segments and first
order Lagrange polynomials, the white circles indicate the val-
ues of the relocalization at the control points (ai in equation
3). Please note that the time-dependent receiver positions are
not confined to the finite-difference grid points, but can be ex-
tracted at arbitrary locations thanks to Kaiser-windowed sinc
interpolation (Hicks, 2002), as the extended receiver position
may fall in between grid points.

The inner loop problem consists therefore in obtaining the op-
timal receivers positions corrections at the control points ai.
However, it appears not tractable to solve the inner problem
using grid-search optimization, as the size of this inverse prob-
lem is too large with the time-dependency. In our previous
study, we have investigated the Markov Chain Monte Carlo
method Aster et al. (2013), which requires a large number
of iterations in order to converge. We have also investigated
simulated-annealing methods (Ingber, 1993), which proved to
be challenging to tune.

We aim at finding a practical and efficient solution for this in-
ner loop problem. We borrow a technique from computational
intelligence: Particle Swarm Optimization, which seems to be
a viable candidate. PSO was proposed by Kennedy and Eber-
hart (1995), it is a heuristic optimization method, where the
search space is explored by so-called particles. A swarm con-
tains Np particles, and each particle explores the search space
by its position x j .

Figure 1: Receiver-extension illustration, (a) data fit: the ob-
served data is shown in a dashed black line, the calculated data
in red and the extended calculated data in green. (b) the calcu-
lated incident wavefield is shown in gray-scale, for different re-
localization values around the original receiver position (white
inverted triangle). The white line shows the time-dependent
receiver relocalization where the calculated data are extracted,
the white circles are the values at the control points.

The best model from the swarm (from all the particles), as-
sociated with the lowest cost function value, is referred to as
the global best (xg in the equations below). The personal best
(xp, j in the equations hereafter) on the other hand, is the best
solution obtained for each individual particle.

Let xi
j denotes a particle j position in a search space RN at

iteration i. The particle position is then updated to iteration
i+1 as such

xi+1
j = xi

j +ui+1
j , with x0

j =U(xmin,xmax), (4)

where ui
j, is the particle position update at iteration i. The

starting particle positions are harvested from a uniform dis-
tribution (U in equation 4, where xmin and xmax are the search
space bounds). In the literature, ui, is referred to as the particle
speed, and is computed as

ui+1
j = ωui

j + c1ri
1 : [xi

p, j −xi
j]+ c2ri

2 : [xi
g −xi

j]. (5)

The first term is called the inertia term controlling the contri-
bution from the past iteration, with ω being the inertia weight
(typically ω ∈ [0.9,1.2]). The second term is the contribution
of the best position for each particle, where xi

p, j is the best
personal position for a particle j along its past trajectory. The
third term is the contribution of the global best position of the
swarm, where xi

g is the global best position.

Terms ri
1 and ri

2 are random variables vectors of the same di-
mension as the particle position xi

j, which are harvested from
a uniform distribution, c1 and c2 are constants, usually set to
equal values, and a : b denotes the term to term product of vec-
tors a and b. If we wish to give more weight to either compo-
nent, the constants c1 and c2 may be adjusted accordingly (in
this study we set c1 = c2 = 2). This is the basic form of global
best PSO (Engelbrecht, 2007) that we use for this study.

Shi and Eberhart (1998) suggest that decreasing linearly the
inertia weight helps improve the PSO performance. This is
something we have verified in our application. We manage the
parameter bounds with ”damped reflection” boundary condi-
tions (Xu and Rahmat-Samii, 2007). In other words, if a parti-
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Figure 2: Inner loop problem example for one receiver with 3 degrees of freedom. (a): normalized misfit function, the yellow point
is the minimum, the white square indicates the PSO global best, the red dots show each particle best positions at the final iteration.
The blue dots are the starting positions for few particles. (b) misfit variation following the a3 axis, shown in a black solid line in
(a). (c) relocalization time profile, the circles show the control points ai, each ai is a dimension in the search space, the observed
data are shown in dashed line, the synthetic data are shown in red line and the synthetic data after relocalization are shown in green.
(d) shows a zoom of traces shown in (c) between the two vertical lines.

cle wanders beyond the space boundary in a given dimension,
it will reflect back inside the domain in the same dimension,
however, its position is damped (scaled by a ≤ 1, where a is
a randomly generated number). This is beneficial in our case,
as the minimum may be near the domain boundary. The up-
date values (equation 5) can also be bounded, in order to help
prevent the particles positions from increasing too fast. We set
the maximum allowed update to half the range of a particle
position ( xmax−xmin

2 ).

The inner problem misfit function exhibits numerous local min-
ima, therefore generating a starting swarm pseudo-randomly
might not be optimal. Having the particles distributed evenly
in the search space, can enhance their searching ability (Richards
and Ventura, 2004). A simple way of achieving this, is by us-
ing an orthogonal particles positions initialization (Yiu-Wing
Leung and Yuping Wang, 2001).

We demonstrate the benefit of orthogonal initialization in Fig-
ure 3. The global best is shown as a function of iterations
for orthogonal and random initializations (the black horizon-
tal lines show the solution obtained with brute-force search for
the purpose of this example). Convergence towards a good so-
lution is obtained with fewer iterations with orthogonal initial-
ization as opposed to random initialization. In our algorithm,
we use this strategy for the first receiver at the first FWI iter-
ation. Then, for the remaining receivers and subsequent FWI
iterations, we take benefit of the previous optimized receiver
(or the previous FWI iteration) to initialize the swarm, in way
that the particles are scattered around this optimal solution.

NUMERICAL TEST ON A NORTH SEA EXPLORATION
SCALE SYNTHETIC MODEL
In order to illustrate PSO for our case, we use a North Sea ex-
ploration scale 2D synthetic model (Figure 5). We parametrize
our time-dependency with two segments with first order La-
grange polynomials (equation 3), leading to three degrees of
freedom per seismic trace in the inner loop problem. In this
example, we use only horizontal relocalization in order to keep
the virtual receiver in the same medium with the same proper-
ties (the water layer). We present in Figure 2a the inner loop
misfit function, with the starting position of few particles in

blue.

Figure 3: Global best as a function of the number of iterations
using (a) orthogonal initialization, and (b) random initializa-
tion. (c) shows the cost value associated with the global best,
at each iteration for both cases.

Figure 4: Source wavelet inversion, (a): time-domain, (b) am-
plitude spectrum.
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Figure 5: A North Sea exploration scale 2D synthetic model,
(a): true model, (b): starting model, (c): final model obtained
with conventional FWI and (d): final model obtained with re-
ceiver extension strategy.

Figure 6: Data fit (a,c) and relocalization gather (b,d), for the
first (a,b) last (c,d) FWI iterations. The calculated data are
shown red and blue color map, and the observed is shown in
gray scale, if the observed and calculated data are in phase,
only blue and black are visible, otherwise, red can be seen.

Those starting positions of the swarm allow each particle to
explore different regions of the search space. The global min-
imum is indicated in yellow, it coincides with the PSO global
best shown as a white square. The personal best positions for
few particles at the last iteration are presented as red dots. We
show the misfit variation following the a3 axis in Figure 2b.

The relocalization profile corresponding to the global solution,
is shown in Figure 2c, to which we superimpose the observed
and synthetic traces, a zoom on the traces is shown as well
in Figure 2d. Looking at the misfit plots, we can clearly see
the difficulty of the problem, finding the global minimum not
being a trivial task.

We carry out a FWI test under the acoustic approximation. We
use a synthetic North Sea exploration scale 2D model (Figure
5a) to create the observed dataset (a variable density from this
model is used as well, although it is not shown). The starting
velocity model is obtained using strong Gaussian smoothing of
the true model, with a correlation length of 2000 m (Figure 5b).
The starting density is obtained using Gardner’s law from the
starting velocity model, given by ρ(x) = 1740(10−3V (x))

1
4 .

During the inversion, only the velocity is updated. First, a
source wavelet inversion is performed (Pratt, 1999) (Figure 4).
For our extended-problem FWI we set the tuning parameter
α to 0.001 and cancel out the receiver speed constraint as it is
not required for this ”small” problem (β = 0). We run the outer
inversion using a preconditioned l-BFGS (Nocedal, 1980).

The data fit and extended receiver position are shown in Fig-
ure 6 for one early and last iteration, showing how the relocal-
ized positions converge toward small value along the nested
loop optimization. Looking at the final model (Figure 5d), the
low velocity anomaly in the center of the model is fully re-
constructed, the top portion of the high velocity basement is
retrieved as well, however imaging below it remains challeng-
ing. A conventional FWI result is shown for the purpose of
comparison (Figure 5c). As expected, it suffers from cycle
skipping and it is unable to reconstruct the velocity model.

CONCLUSIONS AND PERSPECTIVES
In this study we tackle the inner loop problem of receiver-
extension FWI, which proved to be challenging, using a com-
putational intelligence technique (PSO). This optimizer allows
the search space to be explored thoroughly with a manageable
cost.

We have tested our method on a North Sea exploration scale
synthetic 2D model, obtaining promising results. Our PSO al-
gorithm convergence has been improved thanks to an efficient
orthogonal swarm initialization.

Extending the method to 3D FWI as well an application to real
data are the next step of this project. This extension should
take benefit of the same technique for receiver relocalization,
by allowing the virtual receiver to move in a plane defined by
the source, the receiver and depth axis along a predefined tra-
jectory to keep this inner problem in 1D. The computational
complexity of the inner problem would therefore remain the
same in the 3D case for one trace, allowing to give an efficient
extended scheme in 3D.
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