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Summary 
 
Extension strategies rely on introducing additional degrees of freedom to FWI, extending the search 

space. Extension strategies circumvent cycle-skipping by fitting the observed and calculated data when 

the model estimate is poor. Time-dependent receiver extension introduces the receiver position as a free 

parameter, allowing it to move as a function of the acquisition time, which permits to obtain a fit in a 

wrong velocity model. In previous works, we have proposed to parameterize the time-dependent 

receiver extension using a polynomial interpolation, to reduce the computational complexity of the 

approach, obtaining the optimal values at specified control points using stochastic optimization. This 

still can cause limitations: in specific cases, complex relocalization could be needed, which would lead 

to large number of control points, making the strategy computationally intractable. This is the 

motivation of the present study, where we replace this parametrization and stochastic optimization with 

an all-in-one dynamic programming approach. This is possible thanks to the analogy between Dynamic 

Time Warping of seismic images and our time-dependent receiver extension. Numerical experiments in 

2D show how the dynamic programming approach reduces the computational cost, while maintaining 

a finer discretization, and relying on a deterministic optimization process. 
 



Time-dependent receiver extension for FWI: a dynamic programming approach
Introduction
Full Waveform Inversion (FWI) has become the academia and the industry standard for high resolution
seismic imaging. It is formulated as a PDE constrained optimization problem, where the fit between
the observed and synthetic data is improved, by iteratively updating a given initial model. However,
when the initial model is not accurate, causing a phase mismatch of more than half the dominant period
between the observed and calculated data, FWI converges to a non-informative solution, matching the
wrong phases with each other (Virieux and Operto, 2009). This phase ambiguity is the well known
cycle-skipping issue. Numerous strategies have been developed to overcome this issue, the review of
which is beyond the scope of this study. Our work focuses on a class of methods which relies on in-
troducing additional degrees of freedom to the FWI problem. This search space extension circumvents
cycle-skipping by fitting the data when the model estimate is poor. In this study, we focus on receiver
position extension (Métivier and Brossier, 2022). Receiver extension introduces the receiver position
as a free parameter. The resulting problem is a two nested-loops optimization, where the outer loop is
the conventional FWI optimization loop, which updates the model mechanical parameters. The inner
loop solves the subproblem of finding the optimal receivers relocalizations which explain the data better.
We have extended the method by making the receiver relocalization time-dependent, in order to account
for multiple arrivals (Benziane et al., 2024). We achieve this by using a piecewise polynomial temporal
parametrization. The receiver relocalization is thus obtained from a set of control points using interpolat-
ing polynomials. The optimal relocalization values at the control points are obtained using a stochastic
optimization strategy. While we have noted that this approach is efficient on 2D and 3D realistic syn-
thetic case studies, it can still become computationally expensive when complex relocalization profiles
are required to handle complex multi-arrival data. In this case, the increase in the number of control
points leads to an unaffordable computational cost for the inner loop. Also, the use of stochastic opti-
mization requires specific tuning which can be difficult to set, and by essence it is not guaranteed to fully
be able to reproduce the same results upon multiple FWIs. For this reason, we are interested in exploring
an alternative deterministic approach, which does not rely on such a polynomial interpolation. Based on
an analogy with our time-dependent receiver relocalization and the Dynamic Time Warping proposed
by Ma and Hale (2013) and Hale (2013), we explore the feasibility of using a dynamic programming
approach to solve the inner loop of our extension strategy.
Time-dependent receiver extension for FWI
We write the receiver-extension minimization problem as

min
m,∆x(t)

f (m,∆x(t))≜min
m,∆x(t)

1
2

Ns

∑
s=1

Nr

∑
r=1

∫
|dcal,s(xr +∆xs,r(t), t)−dobs,s(xr, t)|2dt +αP1[∆xs,r(t)]+βP2[∆ẋs,r(t)(t)],

(1)
where dcal,s(xr +∆xs,r(t), t)] are the extended calculated data, which are extracted from the synthetic
wavefield, that is computed using a wave equation. dobs,s(xr, t) are the observed data, the subscripts s
and r are the source and receiver indices, respectively, Ns is the total number of sources, and Nr is the
total number of receivers. The quantity ∆xs,r(t) is the time-dependent receiver relocalization, that is, a
spatial shift of a receiver r which depends on the acquisition time. The second term in the right hand
side (P1) is a penalty term, which controls the receiver position so it is not too large, and forces it
to zero as the model estimate improves, with α being a tuning parameter. Similarly, the third term in
the right hand side (P2) is a penalty term which constrains the receiver speed, with β being a tuning
parameter. The second penalty term is needed to mitigate the frequency content changes, which occur
when a receiver moves as a function of time. These frequency content changes are attributed to Doppler
effect. Our bi-variate misfit function is minimized using a nested loops strategy. The outer loop is the
conventional FWI loop, which updates the model parameters m for a an optimal relocalization ∆xs,r(t).
The inner loop obtains the optimal receiver relocalization ∆xs,r(t) for a fixed m. In our previous work
(Benziane et al., 2024), we use a piecewise polynomial interpolation to parametrize the time-dependent
relocalization ∆xs,r(t). The time vector is divided into segments, each of which contains a Lagrange
polynomial. The time-dependent relocalization is thus defined as follows

∆x(t) =
ns

∑
j=1

Nℓ

∑
k=1

ak+Nℓ×( j−1)ℓ
Nℓ
k (t), (2)

where ℓNℓ
k (t) are Lagrange basis functions of order Nℓ, ns is the number of segments and ai (i = k+Nℓ×

( j−1)) are the values at the control points.
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In the inner loop we aim at finding the optimal ai values, that define the time-dependent virtual receivers
positions. The unknowns for this subproblem are therefore a = (a1,a2, ..,aNℓ×ns+1)

T . We rewrite the
minimization of equation 1

min
m,a

f (m,a). (3)

The optimal a is obtained using a global optimization strategy. In our previous work, we have used
Particle Swarm Optimization (PSO) (Kennedy and Eberhart, 1995).

Figure 1: Time-dependent receiver extension illustration.
(a): True velocity model. (b): Initial velocity model. (c):
Data fit, observed trace shown in a dashed black line, syn-
thetic trace in a red solid line and the extended trace in a
blue solid line. (d): Extended trace extraction from the syn-
thetic wavefield shown in gray scale, the relocalization time
profile is shown in a white solid line.

We explain the time-dependent relocaliza-
tion strategy using a simple numerical exper-
iment (Figure 1). Consider one layer with
vp = 2000 m.s−1 over a half-space with vp =
3500 m.s−1. We generate the observed data in
this model, we show a single trace of the ob-
served data in a black dashed line. We com-
pute the synthetic data using a top layer ve-
locity of vp = 2500 m.s−1, and we use the
true velocity in the half-space for the sake of
this illustration. We show the synthetic trace
in a red solid line. The extended calculated
trace is extracted from the synthetic wave-
field (shown in gray scale in Figure 1d) at the
moving receiver positions (white solid line).
Moving the receiver following this relocaliza-
tion time profile, allows to fit both arrivals.
The extended trace is shown in a blue solid
line. We aim in this study at substituting this
parametrization and the subsequent optimiza-
tion, with a dynamic programming strategy.
On the analogy between dynamic time
warping and receiver extension
In the study of Ma and Hale (2013), dynamic
programming was used in wave equation to-
mography, which is formulated as

min
τ

fT = min
τ

1
2

Ns

∑
s=1

Nr

∑
r=1

∫
τs,r(t)2dt, (4)

where τs,r(t) is a time-varying time shift. The latter is obtained through the following constrained mini-
mization

τs,r = argmin
l

Ds,r(l), subject to
∣∣∣∂τs,r

∂ t

∣∣∣≤ σt , (5)

where Ds,r(l) is defined as
Ds,r(l) =

∫
|dcal,s(xr, t + lr(t))−dobs,s(xr, t)|2dt, (6)

where l is a time-varying time-shift. The constraint in equation 5 controls the amount of time-shift from
one time sample to the next. Interestingly enough, the reconstruction of the time varying time shift τs,r(t)
is very close to our inner loop problem. Looking at equations 1 and 6, one can observe that in the DTW
case, a time-dependent time-shift τs,r(t) is sought for each synthetic trace so as to minimize the least-
squares distance between observed and calculated data. In our time-dependent receiver extension case,
we do the same, except that a time-dependent receiver spatial shift is sought for each trace instead of a
time-dependent time-shift. Of note, this difference implies that in our case, the extended calculated data
always satisfy the wave equation, which is not the case for DTW. This analogy also makes it possible to
use dynamic programming to compute the time-dependent receiver extension ∆xs,r(t) directly, without
going through a polynomial parametrization. We thus formulate our inner loop as

∆xs,r(t) = argmin
∆x(t)

f (m,∆x(t)), subject to
∣∣∣∂∆xs,r(t)

∂ t

∣∣∣≤ σx. (7)
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Figure 2: Time-dependent receiver ex-
tension illustration using (a): polyno-
mial parametrization with PSO, and
(b): dynamic programming. The
observed trave is shown in a black
dashed line, and the extended synthetic
in a solid blue line. The relocalization
time profiles are shown in red solid
lines.

The constraint in equation 7 controls the receiver speed. Similar to DTW, receiver extension can be
solved using dynamic programming because it can be broken down into smaller and nested sub problems.
That is, if a relocalization time profile is optimal, then a portion of it is also optimal (Bellman principle of
optimality (Kirk, 1970)). We illustrate our new approach using the previous example from Figure 1: we
show the data fit, as well as the relocalization profile obtained using both the dynamic programming and
the polynomial approaches in Figure 2. The fit for both arrivals is obtained using both approaches, and
the relocalization profiles are very similar. We note that for our polynomial parametrization, the number
of segments as well as the order of polynomials need to be defined a priori. In this example, the number
of degrees of freedom is 4 (three segments with first order Lagrange polynomials). Solving this problem
with stochastic optimization (PSO in this example) requires tuning: defining the number iterations and
various parameters (number of particles, boundary conditions, and other parameters specific to PSO).
The dynamic programming approach does not rely on the polynomial parametrization: the number
of unknowns is simply equal to the number of time samples of the seismic traces. In addition, this
optimization strategy is deterministic, and controlled by less tuning parameters. As for the computational
cost, the dynamic programming approach is considerably cheaper. The dynamic programming problem
of equation 7 is solved in three steps: computation of pointwise misfit function (time sample by time
sample), summation of the misfit following permissible paths, which honor the constraint in equation 7,
and finally, a recursion to reconstruct the solution. The interested reader is referred to Hale (2013).
FWI example: a North Sea exploration scale 2D synthetic model
We test our method using a synthetic North Sea exploration scale synthetic model. We generate the
observed data using the true model under the acoustic approximation. The initial model is obtained
by a Gaussian smoothing of the true model. First, we perform 300 iterations of conventional FWI. As
expected, it is unable to reconstruct the velocity model, starting from this crude initial model.

Figure 3: Numerical example using a North Sea 2D synthetic model, 300 iterations are performed for all tests.
(a): Initial velocity model, (b): true velocity model, (c): reconstructed model using conventional FWI, (d): recon-
structed model using static receiver extension, (e): reconstructed model using time-dependent receiver extension
with PSO for the inner loop, and (f): reconstructed model using time-dependent receiver extension with dynamic
programming.
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Then we compare three receiver extension strategies: first, we perform 300 iterations of static receiver
extension (Métivier and Brossier, 2022), then, 300 iterations of time-dependent receiver extension with
polynomial parametrization and stochastic optimization (Benziane et al., 2024), and finally, 300 iteration
of time-dependent receiver extension with dynamic programming. Static receiver extension performs
better than conventional FWI, however, the reconstructed model contains clearly visible cycle-skipping
artifacts. The reconstruction may be improved with more iterations. Time-dependent receiver extension
with polynomial parametrization is able to fully reconstruct the low velocity anomaly in the center of
the model, as well as most of the high velocity basement. As for the dynamic programming approach,
the reconstructed model is of the same quality (compared to the one obtained using the polynomial
parametrization). We note however that the lower part of the high velocity basement is better resolved
with our new approach.
These results are encouraging, because the reconstruction is satisfactory. In addition, the cost of the
dynamic programming approach is significantly lower. We show the CPU time required to perform the
different steps of computation in Table 1. The CPU times for forward simulation, inner loop computa-
tion as well as the adjoint simulation and gradient summation are shown for conventional FWI, static
receiver extension, time-dependent receiver extension with PSO and time-dependent receiver extension
with dynamic programming. The computational overhead for the static approach is negligible, which is
not the case for the time-dependent strategy with PSO. The dynamic programming approach provides
comparable results, with less computational burden. Please note the slight increase in the adjoint sim-
ulation CPU time, it is attributed it to the adjoint source injection at time-dependent receiver positions,
which is performed at all time steps.

Forward simulation Inner loop Inner loop per receiver Adjoint simulation+
gradient summation

Conventional FWI 13.24 - - 38.88
Static 13.26 2.94 1.73×10−2 39.27

Time-dependent (PSO) 13.18 55.6 0.32 43.70
Time-dependent (DP) 13.21 10.16 6.15×10−2 41.92

Table 1: CPU times in seconds for the different steps of the computation.

Conclusion and perspectives
We have developed an alternative method to solve the inner loop problem using a dynamic program-
ming approach, similar to dynamic time warping of seismic images (DTW). This new strategy provides
satisfactory model reconstructions, starting from a crude intial model. It also eliminates the need to use
stochastic optimization, which is more costly and inherently non-repeatable. This method is particularly
interesting for large scale 3D FWI, where the number of receivers is large.
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