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ABSTRACT

Extension strategies for full waveform inversion (FWI) rely on introducing additional13

degrees of freedom to the FWI problem, which expands the search space. This search14

space extension helps relaxing the non-convexity of the problem, and thereby alleviating15

the cycle-skipping issue. Receiver-based extension strategy introduces the receiver position16

as the additional degree of freedom to full waveform inversion, in order to improve the fit17

between the observed and calculated data at early iterations. This helps circumvent the18

cycle-skipping phenomenon. In this study, we make this receiver position time-dependent,19

meaning that the receiver positions vary as a function of the acquisition time. The resulting20

mathematical problem is a two nested-loops minimization, where the outer loop is the21

conventional FWI loop to update the subsurface mechanical parameters, and the inner loop22

aims at finding the optimal time-dependent virtual receivers positions. This inner loop23

problem is heavily nonlinear and non-convex. Finding the global minimum is therefore a24

challenging task. We use for that a computational intelligence technique, Particle Swarm25

Optimization (PSO). PSO makes it possible to thoroughly explore the search space with26

few iterations. Numerical experiments using a North Sea exploration 2D synthetic model,27
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starting from crude initial models, illustrate that the method is robust and is very easy to28

tune.29
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INTRODUCTION

Full waveform inversion (FWI) is a high resolution seismic imaging technique, which30

aims at reconstructing the subsurface parameters using the full seismic waveforms. From31

a mathematical standpoint, FWI is formulated as a partial differential equation (PDE) con-32

strained optimization problem, where the optimality criterion is the fit between the observed33

and the calculated datasets. This constrained optimization problem is solved iteratively, us-34

ing gradient based approaches. The synthetic data which are computed in a given initial35

model (using a wave equation operator), are conventionally compared to the observed data36

in the least-squares sense. That is, the L2 norm of the difference between the observed37

and synthetic datasets, which we call the misfit. The model is then updated in a manner38

that reduces this misfit. However, the L2 misfit function is non-convex, meaning that it39

contains numerous local minima. Therefore, gradient based (local) optimization strategies40

might fail to converge to a meaningful solution. This occurs when the initial model is not41

accurate enough, causing the calculated data to be shifted in time by more than half the42

dominant period, with respect to the observed data (Virieux and Operto, 2009). This time43

shift between the two datasets is driven by the long wavelength (smooth) part of the ve-44

locity model (Jannane et al., 1989). This long wavelength part of the model controls the45

kinematics of the seismic data. Starting from an initial velocity model that does not con-46

tain the correct long wavelength velocity structure, which gives rise to a time shift larger47

than half the dominant period, causes FWI to converge to a local minimum. This is the48

well-known cycle-skipping issue, and it stems from the oscillatory nature of the seismic49

data.50

3

Page 3 of 105 GEOPHYSICS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Numerous strategies have been developed to circumvent this issue, such as multiscale51

approaches. In this framework, the inversion can be performed from lower to higher fre-52

quencies (Bunks et al., 1995; Sirgue and Pratt, 2004), as starting from lower frequencies53

results in broader phases, the support of which is likely to overlap, decreasing the appar-54

ent shift between the observed and calculated data. The inversion can also be done from55

narrower to wider offsets (Shipp and Singh, 2002; Brossier et al., 2009), as the shorter the56

offset, the less is the time-shift. This can be done in combination with time-windowing,57

considering at first the earlier events, and increasing this time window when the frequency58

and offsets are increased, as the model estimate improves. These strategies, rely on the59

availability of low frequencies and large offset in the data, which is not always possible.60

Furthermore, they do require heavy human intervention, making the FWI process less au-61

tomatic.62

More recent advances suggest different strategies to overcome the cycle-skipping issue,63

by reformulating the FWI problem. We divide these strategies into two categories. The64

first one relies on using alternative misfit functions, instead of the conventional L2 norm.65

The second introduces additional degrees of freedom to the FWI problem, to relax the non-66

convexity. The strategies that fall in the first category use different metrics to measure the67

distance between the observed and calculated data. These alternative misfit functions can68

exhibit improved convexity, compared with the L2 misfit function. They can be based on69

crosscorrelation (Luo and Schuster, 1991; van Leeuwen and Mulder, 2010), deconvolu-70

tion (Luo and Sava, 2011; Guasch et al., 2019; Yong et al., 2022), instantaneous envelope71

(Bozdağ et al., 2011; Wu et al., 2014), dynamic time-warping (Ma and Hale, 2013) or72
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optimal transport distances (Métivier et al., 2016, 2019; Yang et al., 2018b), to cite a few.73

The second category encompasses strategies that rely on introducing additional degrees74

of freedom to the FWI problem. This is done to help relaxing the non-convexity by fitting75

the calculated data to the observed data, when the model estimate is poor. The strategy pre-76

sented in this study belongs to this class of methods. The additional degrees of freedom can77

be introduced in the model space, giving the so-called model extension strategies. These78

methods rely on the assumption of scale separation between the background model and the79

reflectivity model, in a similar fashion as reflection waveform inversion (RWI) methods80

(Brossier et al., 2015; Yao et al., 2020). This is achieved during the image volume con-81

struction, introducing horizontal subsurface offsets or time lags as the additional degrees of82

freedom in the imaging condition. This depth oriented image construction workflow repre-83

sents the so-called Migration Velocity Analysis (MVA) algorithms (Biondi and Sava, 1999;84

Symes, 2008; Mulder, 2014), where it is potentially possible to fit the observed data in a85

wrong background model. Similar to MVA, inversion velocity analysis introduces subsur-86

face offsets or time lags as the additional degrees of freedom, using a nested optimization87

approach (Biondi and Almomin, 2014; Chauris and Cocher, 2017; Barnier et al., 2023a,b).88

An inner loop updates the reflectivity in a given background model in a migration process,89

while the outer loop updates the background model according to some focusing criterion.90

The additional degrees of freedom are relaxed during the process of FWI, thanks to the91

use of a penalty term in the misfit function (an annihilator). The use of an annihilator is92

common to all extension methods. When the extension is carried out in the model space,93

it gives rise to high dimensional problems. For instance, model extension with sub-surface94
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offsets (the extended parameter) leads to 3D problem in the 2D case (x, y, h), h being the95

horizontal subsurface offset. In 3D it leads to a 5D problem (x, y, z, hx, hy) (Chauris and96

Cocher, 2017). The computation and storage related to these hypercubes can be prohibitive97

for large scale 3D problems.98

van Leeuwen and Herrmann (2013, 2016) introduced wavefield reconstruction inver-99

sion (WRI), where the search space is extended by optimizing over both the wavefield100

and the model parameters. This is achieved by considering the wave equation as a soft con-101

straint, using a penalty method. The minimization of the misfit associated with this problem102

gives rise to a linear system, which van Leeuwen and Herrmann (2013) call the augmented103

wave equation. This augmented wave equation gathers the data extraction from the wave-104

field constraint, and the wave equation. This is done in the frequency domain, because105

one linear linear system replaces the classical wave equation, thanks to the possibility of106

the wave equation operator factorization in the frequency domain. It is difficult to use this107

formulation with explicit time-marching in the time-domain, where such factorization is108

not possible. WRI is controlled by a penalty parameter, a scalar weight given to the penalty109

term of the wave equation. The data is matched well for small values of the penalty param-110

eter, even with poor velocity models (less importance is given to the wave equation). We111

note that the penalty parameter needs to be increased during FWI iterations, which makes112

the tuning difficult. This can be circumvented using an augmented Lagrangian formulation113

instead of the penalty method (Aghamiry et al., 2018, 2019b,a), which they call Iteratively114

Refined WRI (IR-WRI).115

Source extension methods are obtained by reparametrizing the WRI by means of a116
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change of variables (Wang et al., 2017; Huang et al., 2018a). Through the change of vari-117

ables, the reconstructed wavefield is replaced with the extended source (also referred to as118

the wave equation error, or scattering source in the literature). The extended source may119

contain energy away from the source position, when the velocity model is farther from the120

target one, which allows to fit the observed data to the synthetic. Huang et al. (2018a) call121

this method Matched Source Waveform Inversion (MSWI), and it is equivalent to WRI.122

Similar to WRI, source extension methods are performed in frequency domain (Huang and123

Symes, 2015; Huang et al., 2018a,b, 2019).124

A time-domain implementation of source extension methods was initially introduced125

by Wang et al. (2017), which they achieve with a source extension approximation (their126

equations 5 to 7). Aghamiry et al. (2020) introduced another method for source extension127

using an explicit time-marching scheme, however it comes with a computational overhead,128

which stems from the backward-forward time-stepping recursion they use. They argue that129

this may be compensated for by the accelerated convergence, and the improved model pa-130

rameters estimate accuracy. Gholami et al. (2022) propose a time-domain implementation131

of IR-WRI, however it does not account for the data-domain Hessian (it is approximated by132

a scaled identity matrix), which could be detrimental for complex geology, when starting133

from a crude initial model. More recently, a new time-domain extended source FWI (ES-134

FWI) implementation was introduced by Guo et al. (2024). ES-FWI does account for the135

data-domain Hessian, by means of a matching filter approximation (Liu and Peter, 2018).136

A comprehensive review of source extension is given by Huang et al. (2019), and more137

recently by (Operto et al., 2023).138
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Extended-receiver FWI is an alternative extension strategy, first introduced by Métivier139

and Brossier (2022). It relies on adding the additional degree of freedom at the receiver140

position, using a static relocalization strategy. Receiver extension is directly applicable to141

time-domain FWI, and has shown promising results in realistic numerical settings. How-142

ever, the method is able to fit only the most energetic arrival, because the relocalization143

is static. The authors have also noticed a slow convergence of the method. In this study144

we build on the work of Métivier and Brossier (2022), introducing more freedom to the145

receiver position, using a time-dependent relocalization strategy. This is done to help ob-146

tain better fit for more complex data, and accelerate the convergence. Our new method is147

also directly applicable to time-domain FWI in a straightforward manner, and it is easy to148

tune. Time-dependent receiver extension relies on solving many small optimization prob-149

lems (one problem per receiver), whose misfit functions are not convex, requiring the use150

of global optimization. The outline of the paper is as follows: a brief overview of conven-151

tional FWI as well as the state of the art extended-receiver FWI are given. Then we explain152

the time-dependent receiver extension, after which we discuss the underlying optimization153

problem. We then present a set of numerical experiments using a North Sea exploration154

scale synthetic model, providing an in-depth analysis of the sensitivity of our method to its155

tuning parameters. We conclude with a discussion about various aspects.156
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BACKGROUND

Full waveform inversion157

Full waveform inversion is a PDE constrained optimization problem, where the fit be-158

tween the observed and calculated data is improved by iteratively updating the model pa-159

rameters. We write the FWI problem160

min
m

f(m) = min
m

Ns∑
s=1

Nr∑
r=1

∫ T

0

|dcal,s[m](xr, t)− dobs,s(xr, t)|2dt, (1)

subject to161 
A(m)us(x, t) = bs(x, t)

dcal,s[m](xr, t) = Rs,rus[m](x, t),

(2)

where dobs,s are the observed data, and dcal,s are the calculated data. s and r are the source162

and receiver indices, respectively, Ns is the total number of sources, Nr is the total number163

of receivers, and xr is the position of the receiver r. The calculated data are extracted from164

the wavefield us, which is computed using the wave equation operator A(m) (equation165

2) with m being the model parameters vector, and bs being the source term. Rs,r is the166

restriction operator, which extracts the wavefield values at the receiver positions using a167

convolution with a Dirac delta function168

Rs,rus[m](x, t) =

∫
Ω

δ(x− xr)us[m](x, t)dx, (3)
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where δ(x) is the Dirac delta function and Ω is the computation domain. The constrained169

optimization problem (1) can be solved by finding the saddle-point of the associated La-170

grangian (Haber et al., 2000). However, the computational cost of solving this problem171

using local optimization for large scale problems is prohibitive: the simultaneous update172

of the wavefields, the model parameters and the Lagrange multipliers requires their storage173

in memory, which is infeasible for large scale problems. In practice, the following reduced174

space approach is used175

min
m

f(m) = min
m

Ns∑
s=1

Nr∑
r=1

∫ T

0

|Rs,rA(m)−1bs(x, t)− dobs,s(xr, t)|2dt. (4)

Problem (4) is an unconstrained optimization problem, where the wavefield us has been176

eliminated from the optimization variables, which exacerbates the non-linearity with re-177

spect to the model parameters. Problem (4) is solved -iteratively- using local optimization178

strategies (Nocedal and Wright, 2006). To do so, the gradient of the objective function179

needs to be computed. The adjoint state strategy is used to carry out this computation180

(Plessix, 2006). Following the adjoint state technique, the gradient is obtained using181

∇mf(m) =
Ns∑
s=1

〈 ∂A

∂m
us(x, t), λs(x, t)

〉
, (5)

where the notation
〈
•, •

〉
indicates an inner-product operation. In time-domain FWI, it cor-182

responds to the zero-lag cross-correlation between the weighted incident wavefield and the183

adjoint wavefield. The latter is computed by back-propagating the data residuals (difference184

between the observed and calculated data) injected at the receivers positions, following185

10
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A(m)Tλs(x, t) =

Nr∑
r=1

RT
s,rµs[m](xr, t)

µs[m](xr, t) = dcal,s[m](xr, t)− dobs,s(xr, t),

(6)

where λs is the adjoint field, computed backwards in time using the wave equation operator186

AT (m). The source term is the data residuals µs injected at the receivers positions by the187

operator RT
s,r. Once the gradient is obtained, the model can be updated. In all the examples188

we show in this paper, we use the preconditioned limited memory BFGS (l-BFGS) (No-189

cedal, 1980) algorithm. The new model mk+1 is therefore obtained by updating the model190

at iteration k following191

mk+1 = mk − αkQk∇mf(mk), (7)

where k is the iteration number, αk is a step-length obtained with a linesearch strategy192

(Nocedal and Wright, 2006), and Qk is the inverse Hessian approximation obtained with193

the l-BFGS algorithm, using l previously stored gradients.194

Static receiver extension for FWI195

Principle196

Receiver extension introduces the receiver position as an additional degree of freedom197

(Métivier and Brossier, 2022). This additional degree of freedom allows to compensate198

for the kinematic mismatch between the observed and calculated data. In other words, by199

allowing the receiver to move in space, a fit can be obtained in the wrong medium velocity.200
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We write the receiver extension misfit function201

min
m,∆x

f̃(m,∆x) = min
m,∆x

1

2

Ns∑
s=1

Nr∑
r=1

∫ T

0

|d̃cal,s[m](xr+∆xr, t)−dobs,s(xr, t)|2dt+α
Ns∑
s=1

Nr∑
r=1

P1,s[∆xr].

(8)

Equation (8) is a bivariate misfit function, depending on m and ∆xr, the latter being202

the additional degree of freedom, namely, the receiver relocalization. The first term in the203

right hand side is the data fit term, where d̃cal,s are the calculated (extended) data, which204

are extracted at the new receiver position. This new receiver position is shifted in space by205

the quantity ∆xr. The calculated data are thus obtained following206

d̃cal,s[m](xr+∆xr, t) =

∫
Ω

δ(x−(xr+∆xr))us[m](x, t)dx
def
= R̃s,r[∆xr]us[m](x, t), (9)

with R̃s,r being the extended restriction operator. The operator R̃s,r is similar to the con-207

ventional FWI restriction operator Rs,r, however, the extraction is now performed at the208

new receiver position xr+∆xr, xr being the true receiver position. The second term in the209

right hand side of equation (8) is a penalty term, which controls the receiver extension, and210

α is a tuning parameter. This term is used in order to prevent the relocalization from being211

too large. The expression of P1,s is given in appendix A.212

We illustrate the leading idea behind the receiver extension with a simple numerical ex-213

periment. In a homogeneous medium (vtrue = 2000 m.s−1) we consider one source/receiver214
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couple. The observed trace is shown in a black dashed line in Figure 1b. The synthetic trace215

is computed in a medium with a higher velocity (2300 m.s−1), and it is shown in a red solid216

line. By allowing the receiver to move (blue triangle in Figure 1a), the kinematic mismatch217

between the observed and calculated data is eliminated, and the traces are aligned in time.218

The extended (relocated) trace is shown in blue. We perform the same experiment for dif-219

ferent velocities, and for different receiver relocalizations. This allows us to visualize the220

objective function of equation (8), for each velocity and for each receiver position. This221

is presented in Figure 2a, where the dashed black line shows the misfit variation at the222

original receiver position (conventional FWI). This misfit is not convex. However, if we223

take the minimum along the relocalization axis (the extended dimension) for each velocity224

following the red line, a convex misfit function is obtained.225

[Figure 1 about here.]226

[Figure 2 about here.]227

Computing a numerical solution228

Bivariate misfit functions such as equation (8), are usually minimized using nested-229

loops strategy. The outer loop is the conventional FWI optimization over the model pa-230

rameters m. The inner-loop solves the sub-problem of finding the optimal receiver relo-231

calization ∆x for a given model m (we drop the subscripts s and r in this analysis for232

compactness). Consider the bivariate objective function f(m,∆x) and the minimization233

problem234
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min
m,∆x

f(m,∆x), (10)

where m is the model parameters vector and ∆x is the receiver relocalization (a spatial235

shift). This problem is equivalent to236

min
m

f̂(m) (11)

where we eliminate the variable ∆x using237

f̂(m) = f(m,∆x(m)), (12)

with238

∆x(m) = argmin
∆x

f(m,∆x). (13)

The objective function f̂(m) is minimized in the outer loop (equation 11), while the inner239

loop carries out the minimization shown in equation (13) which defines ∆x(m). The inner240

loop aims at finding the optimal relocalization ∆x for a given model iterate. In the frame-241

work of FWI, the gradient of the outer loop misfit function f̂(m) is required. This gradient242

is obtained following243

∇mf̂(m) =
∂f(m,∆x(m))

∂m
+

∂f(m,∆x(m))

∂∆x

∂∆x

∂m
. (14)

Per equation (12), ∆x is a minimizer of f(m,∆x) with respect to ∆x, therefore, the244
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first order optimality conditions tell us that245

∂f(m,∆x(m))

∂∆x
= 0, (15)

which yields246

∇mf̂(m) =
∂f(m,∆x(m))

∂m
. (16)

Equation (16) shows that the gradient of the outer misfit function around m, is equal to247

the gradient with respect to m of the bivariate misfit function f(m,∆x) calculated at ∆x.248

The gradient is obtained following249

∇mf̃(m) =
Ns∑
s=1

〈 ∂A

∂m
us[m](x, t), λs[m,∆x](x, t)

〉
, (17)

where the adjoint field λs is obtained using250


A(m)Tλs[m,∆x](x, t) =

Nr∑
r=1

R̃T
s,r[∆xr]µ̃s[m](xr +∆xr, t)

µ̃s[m](xr +∆xr, t) = d̃cal,s[m](xr +∆xr, t)− dobs,s(xr, t).

(18)

This means that the calculated data are now extracted at the extended receiver position251

per equation (9), and the adjoint source position corresponds to the extended receiver as252

well. The latter is achieved using R̃T
s,r, where the extended data residuals µ̃s are injected at253

extended receiver positions. Throughout this paper, we use •̃ to indicate extended quanti-254

ties.255

15

Page 15 of 105 GEOPHYSICS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

The extended receiver strategy with the nested-loops is summarized in algorithm 1. A256

forward modeling is performed in a given model, then the inner-loop computation provides257

the optimal receiver relocalizations. The extended calculated data are then extracted at the258

extended receiver positions. The model is then updated using gradient based optimization.259

It is crucial to note that the inner-loop computation does not require performing forward260

simulations, the extended data are simply extracted from the already computed incident261

wavefield. Métivier and Brossier (2022) use a grid-search to solve the inner loop problem.262

Indeed, finding one optimal receiver relocalization per receiver can be easily (and quickly)263

obtained with this global optimization scheme.264

Algorithm 1 Nested loop optimization

while f̂(mk) > ϵouter do
us ← do forward modelling(m)
while f(mk,∆x) > ϵinner do

f(mk,∆x)← compute inner cost(us)
end while
∆x← ∆x
f̂(mk)← f(mk,∆x)
mk ← update model(mk−1,∆x, us)
k ← k + 1

end while

Limitations of static receiver-extension265

The extended-receiver FWI of Métivier and Brossier (2022) uses static relocalization,266

that is, the receiver position does not depend on time. Despite the promising results, the267

analysis was performed in the framework of a single arrival. They also observed that the268

method suffers from a slow convergence rate. We aim in the present study at addressing269
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these two main issues. Our first investigation step is to introduce more degrees of freedom,270

in order to allow the receiver to move as a function of the acquisition time, as such a fit271

for more complex data can be obtained. By obtaining a better fit at earlier iterations, the272

convergence could be accelerated. This is carefully analyzed and illustrated in the present273

paper.274

Before going into the formalism and the implementation details, we illustrate this strat-275

egy with a simple numerical experiment. We consider a two arrivals case, a transmitted276

and a reflected arrival. The observed data are simulated in a two layers medium, the first277

layer with vp = 2000 m.s−1, and a second layer with vp = 3500 m.s−1 (Figure 3). For the278

sake of illustration, we choose a two layers starting model, where the first layer velocity is279

faster, at 2500 m.s−1, while the second layer velocity is the true one (vp = 3500 m.s−1).280

The observed trace is shown in a dashed black line , and the calculated trace in a solid blue281

line. The receiver relocalization as a function of time is shown in red (Figure 4). This curve282

indicates the receiver relocalization value at each time step, we refer to this curve as the283

relocalization profile. Using receiver-extension, only one arrival can be fitted. This occurs284

since the second (reflected) arrival would require another relocalization value in order to285

align it with the observed reflected arrival. Therefore, only the most energetic arrival is fit-286

ted. Using time-dependent receiver extension (Figure 4c), a fit of both arrivals is obtained.287

We show the FWI kernels in Figure 5, for conventional FWI, static and time-dependent288

receiver extension. The kernel for the conventional FWI case suggests a positive velocity289

update (negative gradient), to a velocity that is already higher than the true value, in the first290

Fresnel zone (yellow arrows). With the static relocalization a correct velocity update is ob-291
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tained in the first Fresnel zone, however two migration isochrones can be seen (red arrows),292

and the rabbit ears (blue arrows) suggest a positive velocity update. This is caused by the293

wrong fit of the second arrival (the adjoint source in Figure 5e shows two events related294

to the reflection). Using time-dependent receiver-extension makes it possible to fit both295

arrivals, obtaining the correct velocity update also in the rabbit-ears Fresnel zones. We also296

see a single migration isochrone, thanks to the fit of the second arrival. This time-dependent297

receiver-extension strategy is detailed in the next section.298

[Figure 3 about here.]299

[Figure 4 about here.]300

[Figure 5 about here.]301

TIME-DEPENDENT RECEIVER EXTENSION FOR FWI

Formalism302

We write the new extended-receiver FWI misfit function as303

min
m,∆x(t)

f̃(m,∆x(t)) = min
m,∆x(t)

1

2

Ns∑
s=1

Nr∑
r=1

∫ T

0

|d̃cal,s[m](xr +∆xr(t), t)− dobs,s(xr, t)|2dt

+α
Ns∑
s=1

Nr∑
r=1

P1,s[∆xr(t)] + β

Ns∑
s=1

Nr∑
r=1

P2,s[∆ẋr(t)].

(19)
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We aim at minimizing the bivariate misfit function in equation (19), where m are the304

model mechanical parameters, and ∆xr(t) is now the time-dependent receiver relocaliza-305

tion. The first term in equation (19) is the data fit term, which is the L2 norm of the data306

residuals. The calculated data are obtained using equation (9) however, the receiver posi-307

tion is now time-dependent. We write the new extended restriction operator308

R̃s,r[∆xr(t)]us[m](x, t) =

∫
Ω

δ(x− (xr +∆xr(t)))us(x, t)dx, (20)

where ∆xr(t) is the time-dependent receiver relocalization. The calculated data are ex-309

tracted at the virtual receivers positions (xr + ∆xr(t)) from the wavefield us(x, t). The310

term P1,s in the right hand side of equation (19) penalizes the receiver relocalization, in or-311

der to prevent it from being too large, and to force it to become small along iterations. The312

parameter α is a tuning parameter, which weighs this penalty term. Similarly, the term P2,s313

in the right hand side of equation (19) penalizes the receiver speed (the first order derivative314

with respect to time of the receiver relocalization), and β is a tuning parameter. This term315

is needed in order to mitigate potential Doppler effects, which stem from a moving receiver316

during the calculated data extraction, and also from a moving adjoint source during the ad-317

joint simulation. The interested reader is referred to the discussion part of this paper. The318

full expressions of P1,s and P2,s can be found in appendix A. The adjoint field is obtained319

using the adjoint system320
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A(m)Tλs[m,∆x(t)](x, t) =

Nr∑
r=1

R̃T
s,r[∆xr(t)]µ̃s[m](xr +∆xr(t), t),

µ̃s[m](xr +∆xr(t), t) = d̃cal,s[m](xr +∆xr(t), t)− dobs,s(xr, t).

(21)

We observe that now the adjoint source moves as a function of the acquisition time.321

The gradient is obtained following the adjoint state strategy322

∇mf̃(m) =
Ns∑
s=1

〈 ∂A

∂m
us[m](x, t), λs[m,∆x(t)](x, t)

〉
. (22)

As in the static case, the time-dependent strategy uses the nested-loops optimization323

approach. The inner-loop finds the optimal receiver relocalizations, while the outer-loop324

updates the model physical parameters. We now focus on the inner loop solution, starting325

with the question: how to parametrize the time-dependent receiver relocalization ∆xr(t)?326

Parametrization327

We seek to answer two questions: [1] how should we parametrize a receiver relocal-328

ization that depends on the acquisition time? [2] how should we parametrize the receiver329

motion in the physical space?330
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Temporal parametrization331

One possible choice of parametrization is assigning a receiver relocalization to each332

time step. However, this would give rise to a problem with a large number of degrees333

of freedom (the number of time steps), which is prohibitive for the global optimization334

strategies, that is going to be used to solve the inner loop problem. To keep a minimal335

parametrization, we propose a piecewise polynomial interpolation. The time vector is336

divided into segments, each of which contains one Lagrange polynomial. We write the337

receiver relocalization as a function of the acquisition time338

∆x(t) =
ns∑
j=1

Nℓ∑
k=1

ak+Nℓ×(j−1)ℓ
Nℓ
k (t), (23)

where ℓNℓ
k (t) are Lagrange basis functions of order Nℓ, ns is the number of segments and339

ai (i = k + Nℓ × (j − 1)) are the values at the control points. In the inner loop we aim340

at finding the optimal ai values, that define the time-dependent virtual receivers positions.341

We illustrate in Figure 6, using three segments with first order Lagrange polynomials. The342

time-dependent relocalization is shown in black line plot, and the blue circles indicate343

the control points. The unknowns for the receiver relocalization subproblem are therefore344

a = (a1, a2, .., aNℓ×ns+1)
T , we rewrite the minimization problem of equation (19) as345

min
m,a

f̃(m, a), (24)

which we solve using the same nested loops approach described in algorithm 1.346

21

Page 21 of 105 GEOPHYSICS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

[Figure 6 about here.]347

Spatial parametrization348

Métivier and Brossier (2022) use only horizontal relocalization, that is the receivers349

are allowed to move only following the horizontal axis, moving closer or farther from the350

source. In our case, relying solely on horizontal relocalization might not be advisable.351

This can be shown by a simple ray theory analysis (Benziane et al., 2023), to visualize the352

receiver positions which allow to fit transmitted and reflected arrivals. We consider a one353

layer over a half-space model (Fig. 7a). The travel-time expression of the reflected arrival354

in the true velocity model v0 is355

T 2
0 =

x2

v20
+

4z2

v20
, (25)

where x is the offset and z is the receiver vertical distance to the reflector. To obtain the356

same arrival time in a wrong velocity model v1, the receiver is relocated. We introduce the357

quantities ∆x and ∆z which provide the same arrival time358

T 2
0 =

(∆x+ x)2

v21
+

(∆z + 2z)2

v21
. (26)

Equating equations (25) and (26) gives359

(∆x+ x)2 + (∆z + 2z)2 = (4z2 + x2)
v21
v20

. (27)
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Similarly, we perform the analysis for a transmitted arrival. The travel-time expression360

of the transmitted arrival in the true velocity model v0 is361

T 2
0 =

x2

v20
. (28)

To obtain the same travel-time for the transmitted arrival in a wrong velocity model, the362

receiver is relocated363

T 2
0 =

∆z2

v21
+

(∆x+ x)2

v21
. (29)

Equating equations (28) and (29) gives364

(∆x+ x)2 +∆z2 = x2v
2
1

v20
. (30)

Equations (27) and (30) are conic section equations. For the reflection case, equation365

(27) describe a circle with a center (−x,−2z), which is the source image with respect to the366

reflector. The radius of this circle is
√
(4z2 + x2)

v21
v20

. We plot the solution of equation (27)367

using different velocities, v1 = 1500 m.s−1, v1 = v0 = 1500 m.s−1 and v1 = 2500 m.s−1.368

The possible receiver positions that give the same travel-time fall on a circle, the radius369

of which increases as the velocity increases. By allowing the receiver to move only hor-370

izontally, a fit cannot be obtained for the lower velocity case (crosses ”×” in Figure 7b).371

Similar to the reflected arrival case, equation (30) describes a circle. However, it is centered372

at the source position (−x, 0). We plot the solution to our equation using three different373
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velocities (Figure 7c). We observe that moving the receiver horizontally, makes it possible374

to fit the transmitted arrival, for all velocities.375

By forcing the receiver to move towards the source following a π
4

angle with respect376

to the horizontal axis, a fit of the reflected and transmitted arrivals can be obtained. This377

is achieved by simply equating ∆x to ∆z when the receiver moves towards the source.378

Therefore, ∆z can be obtained from ∆x using379

∆z =


|∆x| if the receiver is moving towards the source

0 otherwise.

(31)

This is the choice of parametrization that we make, in order to keep the parametrization380

minimal. Again, allowing the receiver to move freely in all the spatial dimensions, would381

give rise to an expensive inner-loop computation. This is avoided thanks to our spatial382

parametrization.383

[Figure 7 about here.]384

We illustrate this parametrization with a numerical experiment, using the same setup as385

in Figure 3. However, we use now a top layer velocity with a lower velocity. Because the386

starting velocity is lower than the true one, the receiver needs to move towards the source.387

If the receiver moves only horizontally, a fit for the reflected arrival cannot be obtained.388

This is shown in Figure 8a, where the observed data are shown in a black dashed line, and389

the extended calculated data are shown in a blue solid line. The receiver needs to move390

following the z-axis in order to obtain a fit for the second arrival. This is in agreement with391
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our ray theory analysis. By allowing the receiver to move vertically (equation 31), a fit for392

the reflected arrival is obtained.393

[Figure 8 about here.]394

INNER LOOP OPTIMIZATION

Overview395

The solution of the inner loop problem using our time-dependent receiver extension396

raises a challenging optimization problem. We illustrate this using a North Sea exploration397

scale synthetic model (Figure 9). We consider a single source/receiver couple, and a single398

segment with first order Lagrange polynomial, leading to two control points a1 and a2. We399

compute the inner-loop misfit function map, using a fine discretization of a1 and a2, which400

we present in Figure 10. Not only our misfit function contains numerous minima: some401

local minima may have very close values (Figure 10b). This makes finding the global min-402

imum a challenging task. A solution can be obtained using global optimization strategies.403

However, it appears not tractable to solve the inner problem using grid-search optimization,404

as the size of this inverse problem will grow large with the time-dependence. Even with405

the parametrization used for the present example (two control points), as the optimization406

needs to be performed for all receivers. Our investigations on global optimization strategies407

have led us to the choice of Particle Swarm Optimization (PSO) (Kennedy and Eberhart,408

1995), over Markov-chain Monte Carlo (McMC) (Aster et al., 2013) and Very Fast Sim-409

ulated Annealing (VFSA) (Ingber, 1993). The former requires a large number of misfit410

25

Page 25 of 105 GEOPHYSICS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

function evaluations to convergence to a good solution, while the latter suffers from pre-411

mature convergence towards bad solutions. PSO on the other hand, allows for a thorough412

exploration of the search space, with reasonable cost. The interested reader is referred to413

the discussion part of the paper.414

[Figure 9 about here.]415

[Figure 10 about here.]416

Particle Swarm Optimization (PSO)417

Particle Swarm Optimization is a computational intelligence technique, proposed by418

Kennedy and Eberhart (1995). It is a heuristic optimization method where the search space419

is explored by so-called particles, in order to minimize some misfit function g(x)420

min
x

g(x). (32)

A swarm contains Np particles, and each particle j explores the search space by its421

position xj . The best model from the swarm (from all the particles), associated with the422

lowest g(x) value, is referred to as the global best (xg in the equations below). The personal423

best (xp,j in the equations hereafter) on the other hand, is the best solution obtained for each424

individual particle. Let xi
j denotes a particle j position in a search space RN at iteration i.425

The particle position is then updated to iteration i+ 1 as such426
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xi+1
j = xi

j + ui+1
j , with x0

j = U(xmin,xmax), (33)

where ui
j , is the particle position update at iteration i. The starting particle positions are427

harvested from a uniform distribution (U in equation (33), where xmin and xmax are the428

search space bounds). In the literature, ui, is referred to as the particle speed, and is com-429

puted as430

ui+1
j = ωui

j + c1r
i
1 : [x

i
p,j − xi

j] + c2r
i
2 : [x

i
g − xi

j]. (34)

The first term in the right hand side is called the inertia term, it controls the contribution431

from the past iteration, with ω being the inertia weight (typically ω ∈ [0.9, 1.2]). The432

second term in the right hand side is the contribution of the best position for each particle,433

where xi
p,j is the best personal position for a particle j along its past trajectory. The third434

term in the right hand side is the contribution of the global best position of the swarm, where435

xi
g is the global best position. Terms ri1 and ri2 are random variables vectors of the same436

dimension as the particle position xi
j , which are harvested from a uniform distribution. c1437

and c2 are constants, usually set to equal values, and a : b denotes the term to term product438

of vectors a and b. If we wish to give more weight to either component, the constants c1439

and c2 may be adjusted accordingly. This is the basic form of global best PSO (Engelbrecht,440

2007).441
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Numerical example442

In order to showcase PSO, we carry out a simple numerical test using the same example443

we showed earlier (Figure 9). We run PSO using 16 particles. We show snapshots of the444

swarm configuration at iterations 1, 40, 80 and 160 in Figure 11. The particles are shown in445

black, the personal best in red, the global best in magenta and the global solution which we446

obtain using a grid search is shown as a red star. The personal best positions are initialized447

with the particle positions and are updated at each iteration. The global best is selected448

from the personal bests (the particle whose personal best has the lowest cost). This process449

is repeated until convergence or the max number of iterations is reached. Note that none450

of the starting particles positions is near the global minimum, nonetheless, PSO manages451

to converge fairly quickly. As is clear from Figure 10, our misfit does contain many sec-452

ondary minima, which is why a population based optimization is a good choice. It allows453

for a thorough exploration of the search space. Even though the global-best is already on454

the global minimum, other particles still search in the vicinity of other secondary minima,455

thanks to the inertia term (equation 34). PSO can achieve convergence fairly quickly, how-456

ever, setting the maximum number iterations to a small value for all receivers is not a good457

idea. Indeed, convergence to a good solution is not guaranteed for the same number of iter-458

ations, for all receivers. A flexible way of handling this, is the use of what we call stalling459

detection. If the global best does not move in nstall iterations the PSO is stopped, as we460

assume the global minimum has been reached. This helps to save computational time. For461

the first example (Figure 11), the max number of iterations is set to 400 and nstall = 200.462

nstall is particularly high in this example because the swarm is small (Np = 16). For a463
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larger swarm, stalling is observed earlier. For Np = 16 the global best has indeed ceased to464

change from the 275th iteration. However the optimization did not stop in this case, because465

the global best needs to stall for 200 iterations. Next, we increase the number of particles466

to Np = 32, in order to observe the impact of the swarm size on the convergence (Figure467

12). Indeed, increasing the swarm size, leads to a sooner stalling, therefore a better conver-468

gence. With 32 particles (shown in blue), stalling occurs at 127 iterations, PSO has stopped469

at 327 iterations. When using 64 particles (shown in red), the global best did not change470

after 34 iterations, PSO was stopped at 234 iterations in this case. Better convergence is471

obtained with a larger swarm size, because increasing the number of particles, allows for a472

better exploration of the search space. In other words, at each iteration, a larger swarm has473

a better ”view” of the search space. It is clear that the swarm size is an important parameter.474

In the literature a choice of≈30 particles is common. A choice of too few particles reduces475

the exploration abilities of the swarm, and choosing too many particles –although better in476

terms of convergence– requires more cost function evaluations (Luu et al., 2018). In our477

work, a swarm size is adapted based on the inner-loop parametrization. Higher dimensional478

problems would benefit from a larger swarm. All the tests performed in this paper (unless479

otherwise stated) use 45 particles. As for the choice of the PSO parameters, we use the480

results from Pedersen (2010). We set c1 = −0.6485, c2 = 2.6475 and ω = −0.6485.481

[Figure 11 about here.]482

[Figure 12 about here.]483

29

Page 29 of 105 GEOPHYSICS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

APPLICATION TO A NORTH SEA EXPLORATION SCALE

SYNTHETIC 2D MODEL

For all our testing, we use the SEISCOPE (acoustic and visco-acoustic) modeling and484

FWI engine TOYxDAC TIME (Yang et al., 2018a). The modeling is performed using485

fourth order finite-differences, with staggered grids (Virieux, 1986; Levander, 1988). A486

second order leap-frog scheme is used for the time-marching. We use Convolutional Per-487

fectly Matched Layers (CPML) (Komatitsch and Martin, 2007) as absorbing boundary con-488

ditions, in order to simulate an infinite medium. We note however that we do not enable489

CPML when attenuation is used, instead, we use sponge layers (Cerjan et al., 1985). The490

gradient computation is performed using the time-decimated incident wavefield, which is491

saved solely at the boundary of the computation domain. This wavefield is interpolated492

using Kaiser-windowed sinc interpolator (Yang et al., 2016c), and is propagated from the493

boundaries during the adjoint simulation. When an attenuating medium is used, we employ494

Checkpointing Assisted Reverse-Forward Simulation or CARFS (Yang et al., 2016b). We495

note that the synthetic data extraction and adjoint sources injection are performed using496

Kaiser-windowed sinc interpolation as well (Hicks, 2002).497

We use a North Sea exploration scale synthetic model in our testing. First we consider498

a constant density noise-free experimental setup (inverse crime), for which we carry out499

an in-depth analysis as well as a sensitivity study. Second, we design a more realistic500

experimental setup using the same model.501
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Inverse crime settings502

We first generate the observed data using the true model shown in Figure 13a. The finite503

differences grid points spacing is set to 25 m, the time step is 0.003 s and the total number504

of time steps is 4000. The source wavelet is a Ricker wavelet with 4 Hz central frequency, it505

is filtered with a high-pass filter with cutoff frequency of 2 Hz (Figure 14). The acquisition506

used for the tests in this section is a fixed-spread acquisition, with 128 sources, spaced with507

132 m, and 170 receivers spaced with 100 m. The starting model is obtained by a Gaussian508

smoothing of the true model (Figure 13b).509

[Figure 13 about here.]510

[Figure 14 about here.]511

Before diving into a deeper analysis, we make a comparison of conventional FWI,512

extended-receiver FWI with static relocalization (α = 0.375) and our time-dependent ap-513

proach (α = 0.01, β = 0.25, with one segment and two control points). We perform 300514

iterations for all cases, the results are shown in Figure 15. As expected conventional FWI515

struggles to reconstruct the true velocity, from this crude starting model. Static receiver ex-516

tension provides a better reconstruction, however with visible defects. The time-dependent517

approach on the other hand, is able to better reconstruct the velocity model from this crude518

starting model. We show the model error as a function of FWI iterations in Figure 16. The519

model error is computed using520
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E =
100

M

M∑
i

=
|mest,i −mtrue,i|
|mtrue,i|

, (35)

where M is the total number of model points, mest,i is the estimated model at point i and521

mtrue,i is the true model at point i. The model error for the conventional FWI increases at522

first, then decreases to 9%, a value higher than the error at the starting model. Static receiver523

extension performs better: the model error is mainly decreasing. The time-dependent ap-524

proach provides the best reconstruction, the model error decreases quickly to a lower model525

error.526

To better understand why it works, we take a look at the data fit for both static and time-527

dependent extension approaches (Figures 17 and 18). At the first iteration a better fit is528

obtained using the time-dependent approach (blue and black on the Figures indicate a good529

fit). As the model estimate improves, the relocalization tends to zero, this is apparent at the530

last iteration. This can be better assessed by looking at the adjoint source (data residuals)531

in Figure 19. The adjoint source at the last iteration of the time-dependent approach has the532

lowest values, compared to the static approach, and the conventional FWI. This is indicative533

of a better model reconstruction. Time-dependent receiver extension is able to reach a lower534

model error, and a lower relocalization at the final iteration. This is not the case for the static535

approach, where at the last iteration, the relocalization is still important. Better explaining536

the data when the model estimate is poor, leads to a better model reconstruction.537

[Figure 15 about here.]538

[Figure 16 about here.]539

32

Page 32 of 105GEOPHYSICS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

[Figure 17 about here.]540

[Figure 18 about here.]541

[Figure 19 about here.]542

To complement our analysis, we show the misfit function evolution as a function of543

FWI iterations, for the static and time-dependent cases in Figures 20a and 20b, respectively.544

The data fit term (L2 norm of the data residuals without using relocalization) is shown as545

well (red line plot). The L2 misfit increases at first while the extended-receiver FWI is546

decreasing, which indicates that L2 FWI would have been stuck in a local minimum. We547

note also the rapid reduction of the time-dependent approach cost function, as opposed548

to the static counterpart. The L2 norm of the data residuals for the static relocalization549

case increases at first (similar to the time-dependent approach), but then it stagnates after550

a brief decrease, which indicates a slow convergence. Next, we take a look at the receiver551

relocalization evolution as a function of outer-loop iterations. It is shown solely for the552

leftmost, center and rightmost shot gathers. We obtain it using553

R1 =
1

Nr

Nr∑
r=1

√∫ T

0

|∆xr(t)|2dt. (36)

The receiver relocalization can viewed as a proxy for model error, larger relocalization554

indicates a poor model estimate. The relocalization decreases almost monotonically for555

both approaches (Figure 21), however, the time-dependent approach reaches lower relocal-556

ization, faster. For the time-dependent case we can also visualize the receiver speed as a557
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function of outer loop iterations, which is obtained using558

R2 =
1

Nr

Nr∑
r=1

√∫ T

0

|∆ẋr(t)|2dt. (37)

The receiver speed decreases monotonically as the model estimates improves (Figure559

22). The receiver speed is not too large (maximum of ≈ 500 m.s−1 for the leftmost and560

rightmost gathers), thanks to the second penalty term. This is an expected behavior, as the561

model estimate improves, there is less need for the receiver to move too fast.562

For the tests we showed here, we set α = 0.375 for the static approach, and for the563

time-dependent approach we set α = 0.01 and β = 0.25. How would extended-receiver564

FWI behave when these tuning parameters are perturbed? We answer this question in the565

next paragraphs.566

[Figure 20 about here.]567

[Figure 21 about here.]568

[Figure 22 about here.]569

Sensitivity to the tuning parameters570

In this section we investigate how the tuning parameters in our cost function (α and571

β) impact the model reconstruction, the data fit and the convergence. We carry out three572

sets of tests: [1] α variations impact on static receiver extension, [2] α variations impact573
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on time-dependent receiver extension for a constant value of β, and [3] α and β variation574

impact on the time-dependent receiver extension. We keep the same experimental setup575

(Figure 13). For each experiment 300 outer loop iterations are performed. For the inner576

loop, we use one segment with first order Lagrange polynomial giving a two degrees of577

freedom problem, which we solve with a grid-search. We do this in order to avoid the PSO578

tuning parameters impacting our sensitivity testing.579

Static receiver extension: sensitivity to α580

For this first set of experiments we test 24 equally spaced values of α ∈]0, 1]. Extended-581

receiver FWI is then carried out using static relocalization. We show the cost function at the582

last iteration as well as the model error as function of α in Figure 23a and 23b, respectively.583

The cost function at the last iteration increases –in the most part– with increasing α with584

a few outliers. The first outlier corresponds to α = 0.125, it is caused by a line-search585

failure (that is, the line-search process in the outer loop was unable to find an adequate step586

length). The second outlier corresponds to the lowest cost value that was achieved with587

α = 0.375. Two other points, α = 0.333 and α = 0.416 do not follow the trend as well.588

These four points and two others, namely, α = 0.583 and α = 0.791 are shown as black589

circles in Figures 23a and 23b. The corresponding models are shown in Figure 24, this is590

discussed in the next paragraph. Increased cost at the last iteration with increasing α is -in591

theory- expected, as the relocalization is constrained more with increasing α. However,592

we note that the static relocalization is sensitive to small variation in the tuning parameter.593

As for the model error, it varies with α, but the variation is less apparent. We also note594
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that the model error is high for all α values, which indicates that the model reconstructions595

are not satisfactory. The relocalization at the first and last iterations (Figures 23c and 23d,596

respectively) are as expected, the values decrease with increasing α values. It is interesting597

to note that the relocalization value at the last iteration, for small α values is high. This598

means that the model reconstruction is not satisfactory, otherwise, the relocalization would599

tend to zero.600

We show the reconstructed models that correspond to the selected α values in Figure 24.601

The selected α values are shown as circles in Figures 23a 23b. This approach appears to be602

sensitive to the choice of α. Small variations of the tuning parameter, lead to a significant603

change in the reconstructed model. This means that the static relocalization approach is604

difficult to tune.605

[Figure 23 about here.]606

[Figure 24 about here.]607

Time-dependent relocalization: sensitivity to α608

We perform a similar numerical experiment using our time-dependent strategy, we set609

β = 0.25 and we test the 24 α ∈]0, 1]. The results are shown in Figure 25. The choice of610

α appears to have less impact on the cost function at the last iteration, and lower values are611

reached, this is not the case for the static approach. Note that we use the same normalization612

to obtain the normalized cost, for the static and the time-dependent approaches, this is613

done in order to keep the cost function plots comparable. The tuning parameter does not614
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have a significant impact on the model error, we note also that a lower model error is615

reached for all α values, compared to the static counterpart. The impact of this tuning616

parameter on the relocalization at the first iteration appears to be –roughly– linear, the617

relocalization decreases with increasing α, which is an expected behavior. As for the last618

iteration, α appears to have no observable effect, and the relocalization tends to zero. This619

is an indication of good model reconstruction. Our approach appears to be less sensitive620

to the choice of the tuning parameter α. We show the reconstructed models (Figure 26)621

corresponding to the same selected α values for the static case. These values are indicated622

by black labeled circles in Figure 25a and 25b. The effect of α on the reconstruction appears623

to be minimal. This is an encouraging observation, as it means that the method is easy to624

tune. For these tests, the β value has been kept constant, how does our method behave625

when both α and β are perturbed? To answer this question, we devise a parametric study626

which we discuss in the next paragraphs.627

[Figure 25 about here.]628

[Figure 26 about here.]629

Time-dependent relocalization: sensitivity to α and β630

In order to understand how the two tuning parameters α and β impact our strategy, we631

conduct a parametric study scanning for a different α and β values. This is a computation-632

ally expensive test, therefore, we use a non-regular grid. The tuning parameters values are633

shown in Table 1, where the first row shows the α and β values we consider, and the second634
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row shows the additional values that are considered only for the β parameter.635

[Table 1 about here.]636

Following the same setup as before, we run extended-receiver FWI for 300 iterations637

for each combination of α and β. We show the result in Figure 27 using a logarithmic scale638

for both axes. Similar to the previous test, the time-dependent strategy appear to be less639

sensitive to the choice of α. This can be seen in the cost obtained at the last iteration, and640

also in the model error, shown in Figures 27a and 27a, respectively. The minimum cost641

is obtained for α = 0.025 and β = 0.25, and the minimum model error for α = 0.0075642

and β = 0.75. We show the corresponding final models in Figures 28a and 28b. The643

reconstructed models are mostly good, regardless of the choice of the tuning parameters.644

However, for large β values, the model reconstruction is impacted, which can be seen on645

the relocalization (leftmost and rightmost shot points). This occurs when β is large: the646

method then behaves as static relocalization, the receiver speed being heavily constrained.647

The best results are obtained for reasonably low β values (not greater than 0.75 based on648

our findings from this experiment). This test concludes the investigations done in inverse649

crime settings. Next, we design a more realistic experimental setup.650

[Figure 27 about here.]651

[Figure 28 about here.]652
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Realistic settings653

We now use the same North Sea exploration scale 2D synthetic model in a more realistic654

setting. First, the observed data are computed under the visco-acoustic approximation using655

the Vp, ρ and Qp models, shown in Figure 29. The source wavelet is a Ricker centered at 4656

Hz. It is filtered with a high-pass filter with cutoff frequency of 2 Hz. As for the acquisition,657

it is a fixed-spread setup, with 128 sources spaced with 117.5 m, and 150 receivers spaced658

with 100 m. The discretization step used for the finite differences is set to 12.5 meters,659

the time step is set to 0.0015 seconds, and the number of time steps is 6000. The data660

are decimated to a time step of 0.003 seconds, and a band-limited Gaussian noise is added661

(Figure 30). The discretization step used for the forward computations during the inversion662

is set to 25 meters. For the receiver extension, we set α = 0.01 for both the static and663

time-dependent cases. Only for the time-dependent approach, we set β = 0.0025, and the664

time-dependent relocalization is parametrized with one segment and two control points.665

[Figure 29 about here.]666

[Figure 30 about here.]667

The starting velocity model is a 1D model (obtianed with V 1D
P (z) = 0.38z + V water

P ),668

the starting density model is obtained using Gardner’s law on the starting velocity model,669

which is given by ρ(x) = 1740(10−3V (x))
1
4 . The quality factor is set to 100 everywhere,670

except in the water layer where it is set to 1000. The starting models are shown in Figure671

31. For these numerical tests we only update the velocity during the inversion. First we672
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perform a source time function estimation in the starting velocity model (Pratt, 1999), the673

result of which is shown in Figure 32. The inversion is performed for 300 iterations using674

conventional FWI, static receiver extension, and time-dependent receiver extension, with675

the previously computed wavelet.676

[Figure 31 about here.]677

[Figure 32 about here.]678

We show the reconstructed models after the 15, 110, 205 and 300 iterations in Fig-679

ure 33. As expected, conventional FWI is unable to reconstruct the velocity from the 1D680

starting model. Static relocalization performed a bit better, however, some high velocity681

artifacts are present in the low velocity anomaly in the center of the model. The time-682

dependent approach provides the best model reconstruction. The low velocity anomaly is683

fully reconstructed, as well as most of the higher velocity basement. We show the data fit684

as well as the relocalization gathers, for the first and last iterations for both approaches in685

Figures 34 and 35. A good fit is obtained at the first iteration for both strategies. However,686

at the last iteration the data fit prior to relocalization is better for the time-dependent case.687

Moreover, the receiver relocalization is lower at the last iteration for the time-dependent688

case, which indicates a better model reconstruction. These results in a 2D realistic setting689

are very encouraging.690

[Figure 33 about here.]691

[Figure 34 about here.]692

40

Page 40 of 105GEOPHYSICS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

[Figure 35 about here.]693

DISCUSSION

In this section we discuss the following points: [1] the use of the second penalty term694

(P2 in equation 19) and the Doppler effect, [2] the choice of PSO as our global optimization695

scheme, and [3] finally the computational overhead of our strategy with respect to more696

conventional FWI approaches.697

The term P2 and the Doppler effect698

The second penalty term is added to constrain the receiver speed. This is important as699

moving receivers, or moving sources alter the frequency content of the data. In our case, we700

encounter both situations. The calculated data extraction from the wavefield at a moving701

receiver positions, with a stationary source, causes a change in the frequency content. A702

moving source is encountered during the adjoint simulation, where the adjoint source (our703

receiver), is moving as a function of time, which in turn, can cause the frequency content704

change. These frequency content changes are attributed to the Doppler effect. For the705

moving receiver case, these effects can be better understood by looking at the Doppler706

effect formula707

f =
vp ± vr

vp
fo, (38)
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where f is the observed frequency, and fo is the emitted frequency. vp is the medium708

velocity and vr is the receiver speed. The latter is added if the receiver is moving towards709

the source, and subtracted in the other case. Equation (38) is for the case where the source is710

stationary and the receiver is moving. If the source is moving and the receiver is stationary711

(the adjoint simulation), the observed frequency is given by712

f =
vp

vp ± vs
fo, (39)

where vs is the source speed, it is added if the source is moving away from the source,713

and it is subtracted in the other case. We illustrate the moving receiver case in Figure 36,714

using the same 2 layers setup shown in Figure 4. The spectrum of the calculated data,715

which is extracted at the time-dependent receiver position without using the second penalty716

term (β = 0) is shown in red. The blue curve is obtained with β = 0.001, and the green717

curve is for the static relocalization case (the receiver position does not depend on time).718

In the case where no constraint is imposed on the receiver speed (red plot) we can see that719

the spectrum is different. In particular, energy at low frequencies is added, this is due to720

Doppler effect for a receiver moving away from the source. When the receiver speed is721

constrained (β = 0.001), the spectrum is much closer to the one obtained with β = ∞,722

therefore mitigating the Doppler effect.723

[Figure 36 about here.]724

Another interesting observation can be made for the experiment where the source is725

moving (an adjoint source, our receiver). We show the adjoint field at time 3.18 s in Figure726
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37a. The source is moving to the right at a speed which is higher than the medium velocity,727

the structure that appears on the left of the moving source is called a Mach cone. The728

gradient resulting from this adjoint field is shown in Figure 37b, the positions occupied by729

the moving receiver are superimposed to the gradient, the color map indicates the receiver730

speed. Numerical artifacts are present in our gradient, which are caused by the frequency731

increase, which in turn, stems from the Doppler effect.732

[Figure 37 about here.]733

Choice of a global optimizer734

In a previous work (Benziane et al., 2023), we have investigated various methods for the735

solution of the inner loop problem. Namely, Markov-chain Monte Carlo methods (Aster736

et al., 2013), simulated annealing (Sen and Stoffa, 2013), and a variation of it, Very Fast737

Simulated Annealing or VFSA (Ingber, 1992, 1993). McMC is in fact a very good method738

for exploring the parameter space, and inferring the posterior distribution. The sought dis-739

tribution (the posterior) is inferred by randomly sampling a proposal distribution. Each740

sample is either accepted or rejected using the Metropolis-Hastings criterion (Metropolis741

et al., 1953; Hastings, 1970). However, it is very costly, because many misfit evaluations742

are required for the Markov-chain to converge to a stationary distribution. Simulated an-743

nealing is similar to McMC, as it also uses a Markov-chain, however, the probability of744

accepting a candidate solution is decreased along the iterations, making use of the so-745

called ”cooling schedules”. The cooling schedule forces the acceptance probability to be746

large for most candidate solutions at earlier iterations, which translates to a high acceptance747
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rate. This probability is reduced using the cooling schedule, which could drastically reduce748

the acceptance rate. Simulated annealing is not very well adapted to our problem, as it749

suffers from premature convergence. This premature convergence to a local minimum oc-750

curs when the best candidate reached by the Markov-chain is a local minimizer, while the751

probability of acceptance decreases, making this local minimizer overwhelmingly proba-752

ble. Furthermore, it was notoriously difficult to tune, namely, choosing a cooling schedule753

and its parameters. Very Fast Simulated Annealing suffers from convergence issues for our754

problem, although, it is easier to tune than conventional simulated annealing, as it relies on755

a single cooling schedule and a single generating distribution, which reduces the number of756

tuning parameters. Grid-search is of course costly, even for the simplest parametrization we757

can consider (one segment with first order Lagrange polynomial, giving a two dimensional758

problem).759

In order to illustrate this, we use a North Sea Exploration Scale synthetic model. We760

keep the same setup, which is shown in Figure 9. We consider two segments with first order761

Lagrange polynomials, giving a three degrees of freedom problem. We compare different762

global optimization schemes, namely, McMC, VFSA and PSO. First, we sample the inner763

loop misfit function using McMC (Figure 38). This plot is obtained by cross-plotting each764

dimension against another, couple by couple. In other words, for a given point sampled by765

McMC in this 3-D space, with the coordinates (a1, a2, a3), we plot its position in 2-D as766

such, a1 is plotted against a2 and then against a3. We assign the value of the cost function767

to the sample providing the color map shown. The diagonal shows the histogram in each768

dimension. Thanks to the McMC sampling, we can see the inner loop misfit function,769

44

Page 44 of 105GEOPHYSICS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

which contains many local minima. The misfit function corresponding to the couples a3/a1,770

and a2/a3, varies slowly compared to the other couples, and the histograms for a3 is flat.771

This is expected, as the point points a1 and a3 correspond to the start and the end of the772

seismic trace, respectively. The data values at early times, as well as very late time (time773

steps closer to the end of the trace) are close to zero. This reduces the sensitivity to a1 and774

a3, this is particularly true for a3.775

We carry out the inner-loop optimization using McMC, VFSA and PSO. We show the776

evolution of the cost as a function of iterations in Figure 39. Note that the McMC plot shows777

only samples that reduce the cost function, otherwise, the plot would be cluttered. For this778

McMC example, a total of 2.5× 106 misfit evaluations have been performed. But the plots779

show only 25000 samples, as we did a burn-in period of 5000 iterations and a skipping780

step of 500 iterations. This is done to avoid the correlation effects between samples, which781

stem from the pseudo-random number generation process (Aster et al., 2013). McMC did782

in fact provide a good solution, but it required a large number of cost function evaluations.783

VFSA did not converge to a meaningful solution, which is clear in the cost function plot.784

PSO gave the most interesting result, converging quickly to the global minimum. This785

population based strategy is well adapted to our problem, this can be seen in Figure 39b.786

The personal best cost for few particles are shown, different particles explore in the vicinity787

of various minima, leading to a convergent behavior of the swarm. That is why we use PSO788

for the inner loop optimization. Furthermore, PSO tuning was less challenging thanks to789

the few published meta-optimization studies (Pedersen, 2010; Mason et al., 2018), where790

we obtained the PSO parameters.791
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[Figure 38 about here.]792

[Figure 39 about here.]793

Computational cost794

The CPU times we show in Table 2 correspond to the realistic setting example we795

showed earlier (Figure 29). Please note that we use Checkpointing Assisted Reverse For-796

ward Simulation (CARFS) for the gradient computation (Yang et al., 2016a) for all our797

numerical experiments. We have a slight increase in the forward computation CPU time798

for both static and time-dependent receiver extension, this is caused by the decimation and799

storage of a portion of the wavefield that we use for the extension. The main computation800

overhead comes from the inner loop optimization. The computational burden for the static801

receiver extension is minor. However, for the time-dependent approach the inner loop com-802

putation is more important. An increase in the gradient computation CPU time is caused803

by the adjoint-source injection. We recall the adjoint equation804


A(m)Tλs[m,∆x(t)](x, t) =

Nr∑
r=1

R̃T
s,r[∆xr(t)]µ̃s[m](xr +∆xr(t), t),

µ̃s[m](xr +∆xr(t), t) = d̃cal,s[m](xr +∆xr(t), t)− dobs,s(xr, t).

(40)

The cost of adjoint simulation is more important for the time-dependent approach, as805

we use Kaiser windowed sinc interpolation (Hicks, 2002) to inject the adjoint the sources806

at moving receivers positions. This is performed for all receivers at every time step. Even807

though the cost increase is not negligible, it is certainly manageable. Also, the convergence808
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to a good model is obtained faster.809

To put the computation overhead into perspective, we take a look at the time complexi-810

ties. The time complexity for the forward and adjoint simulations isO(n2) in 2D andO(n3)811

in 3D. As for the inner-loop, the complexity in term of the number of receivers is O(n) in812

2D, and O(n2) in 3D. The large number of receivers in 3D can constitute a bottleneck. We813

address this point in the conclusion of this paper.814

[Table 2 about here.]815

CONCLUSION AND PERSPECTIVES

Conclusion816

Extended-receiver FWI with time-dependent relocalization have shown promising re-817

sults. The ease with which this method is directly applied to time-domain FWI, as well818

as the simplicity of tuning its misfit function are very encouraging. Another advantage is819

that there is no need to adjust the tuning parameters during the inversion. The speed of820

convergence from very crude starting models is another attractive feature. However, the821

method comes with a non-negligible but certainly manageable computation cost.822

Perspectives and ongoing work823

The next step of our work is extending the method to 3D as well as an application to a824

field dataset. The 3D extension of this method relies on the idea of allowing the receivers to825
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move either towards or away from the source, following a fixed angle defined by the source826

and receiver positions. The preliminary results in 3D synthetic settings are encouraging.827

The 3D implementation comes with a caveat: the increasing the number of receivers.828

This has encouraged us to develop an alternative parametrization and optimization for the829

inner-loop, in order to make the cost manageable for 3D application. This strategy relies on830

the observation that the receiver relocalization problem broken down into a series of nested831

smaller problems, in a similar fashion to dynamic time warping (Hale, 2013), which can be832

solved deterministically. This approach is considerably less costly than the stochastic ap-833

proach described herein. Testing in 3D settings using our dynamic programming approach834

is ongoing.835
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APPENDIX A

FULL MISFIT FUNCTION EXPRESSION FOR

EXTENDED-RECEIVER FWI

We write the full expression of the receiver-extension misfit function836

min
m,∆x

f̃(m,∆x) = min
m,∆x

1

2

Ns∑
s=1

Nr∑
r=1

∫ T

0

|d̃cal,s[m](xr +∆xr, t)− dobs,s(xr, t)|2dt

+
α

2

Ns∑
s=1

Nr∑
r=1

||dobs,s,r||2∞
||∆xs,r||22

L2
.

(A-1)

the second term in the right hand side is the penalty term (P1 in equation 8), it prevents837

the relocalization from being too large, and forces the receiver to its original position as838

the model estimate improves. In this penalty term, L is the maximum allowed receiver839

relocalization, and α is a tuning parameter.840

Similarly, we write the misfit function of the extended-receiver FWI with time-dependent841

relocalization842

min
m,∆x

f̃(m,∆x) = min
m,∆x(t)

1

2

Ns∑
s=1

Nr∑
r=1

∫ T

0

|d̃cal,s[m](xr +∆xr(t), t)− dobs,s(xr, t)|2dt

+
α

2

Ns∑
s=1

Nr∑
r=1

||dobs,s,r||22
||∆xs,r||22

L2

+
β

2

Ns∑
s=1

Nr∑
r=1

||dobs,s,r||22
||∆ẋs,r||22
V 2
max

(A-2)
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the second term in the right hand side of equation A-2 (P1 in equation 19) penalizes the843

receiver relocalization, in order to prevent it from being too large, and to force it to become844

small along iterations. L is the maximum allowed receiver relocalization, and α is a tuning845

parameter, for weighting this penalty term. Similarly, the third term in the right hand side846

of equation A-2 (P2 in equation 19) penalizes the receiver speed (the first order derivative847

with respect to time of the receiver relocalization). Vmax is the maximum allowed receiver848

speed, and β is a tuning parameter.849
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LIST OF FIGURES

1 Receiver extension illustration. (a) Acquisition setup, the source is shown1011

as a black star, the receiver position as a red triangle, and the extended1012

receiver in blue, (b) observed trace (black dashed line), calculated trace (red1013

solid line), and calculated trace extracted at the extended receiver position1014

(blue solid line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641015

2 Illustration of the receiver-extension misfit function. (a) Misfit function 2D1016

view as a function of velocity and receiver relocalization. The minimum is1017

shown in white, the misfit values corresponding to the receiver-extension1018

are shown in a red dashed line. The dashed magenta line indicates the ve-1019

locity value at which the calculated data in Figure 1 are computed. (b)1020

Misfit function profile along the zero-relocalization (conventional L2 mis-1021

fit) in a solid black line, misfit function profile along the minimum value1022

over the receiver relocalization ∆xs,r in a dashed red line. . . . . . . . . . 651023

3 Experimental setup (a): true velocity model, (b): the starting model used1024

for gradient illustration hereafter. . . . . . . . . . . . . . . . . . . . . . . 661025

4 Observed and calculated data, as well as relocalization time profiles for:1026

(a) conventional FWI, (b): static relocalization and (c): time-dependent1027

relocalization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671028

5 FWI kernels and adjoint sources for (a,d): conventional FWI, (b,e): static1029

relocalization and (c,f): time-dependent relocalization. The yellow arrow1030

indicates the first Fresnel zone, the blue indicates the rabbit-ears and the1031

red arrows show the migration isochrones. . . . . . . . . . . . . . . . . . 681032

6 Time-dependent parametrization example, using three segments with first1033

order Lagrange polynomials. The circles indicate the control points ai. . . 691034

7 Simple reflection case analysis with receiver extension. The geometry is1035

shown in (a), the original and extended receiver positions shown as a black,1036

and white inverted triangles, respectively. ∆x and ∆z are the horizontal1037

and vertical receiver relocalizations. The possible receiver relocalizations1038

at different velocities for the reflection and transmission cases are shown in1039

(b) and (c), respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 701040

8 Data fit and relocalization profiles for a two arrivals case using a a lower top1041

layer starting velocity. (a): Time-dependent horizontal relocalization, and1042

(b): time-dependent relocalization with both vertical and horizontal com-1043

ponents. The observed trace is shown in a black dashed line, the calculated1044

is shown in a blue solid line, the horizontal relocalization is shown in a red1045

solid line, and the vertical in a purple solid line. . . . . . . . . . . . . . . . 711046

9 A North Sea exploration scale synthetic model, (a): true model, (b): start-1047

ing model obtained by Gaussian smoothing of the true model. . . . . . . . 721048
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10 Inner-loop illustration, (a): misfit function map, using one segment and1049

two control points, the global minimum is shown as a red star. (b): A cross1050

section following the black line in (a). Note how close are the values of the1051

global minimum (red vertical dashed line), and the secondary minimum1052

(blue vertical dashed line). (c): the observed shown in a black dashed line,1053

calculated in a red solid line and the extended data corresponding to the1054

global minimum shown in a blue solid line. . . . . . . . . . . . . . . . . . 731055

11 PSO example showing the swarm configuration at different iterations su-1056

perimposed on the misfit map, the personal best positions are shown in1057

cyan and the global best in magenta, the global solution (obtained with1058

grid-search) is shown as a red star. . . . . . . . . . . . . . . . . . . . . . . 741059

12 Global best normalized cost as a function of the number of iterations using1060

16, 32 and 64 particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 751061

13 A North Sea exploration scale synthetic model. (a): true model used to1062

generate the observed data, (b): the starting model. . . . . . . . . . . . . . 761063

14 The source wavelet used for the numerical experiment. (a): time-domain1064

(b): frequency domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 771065

15 Reconstructed velocity models after 300 iterations. (a): conventional FWI,1066

(b): static extended-receiver FWI and (c): time-dependent extended-receiver1067

FWI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 781068

16 Receiver relocalization as a function of iterations,(a): static extended-receiver1069

FWI, (b): time-dependent FWI . . . . . . . . . . . . . . . . . . . . . . . . 791070

17 Synthetic and observed shot-gathers as well as the relocalization gathers for1071

the static case. We display the calculated data in a red and blue color scale1072

while the observed data is shown in gray-scale. If solely blue and black are1073

apparent on the wiggles, a good fit is obtained, if the red shows than the fit1074

is not satisfactory. (a,d): Data fit before relocalization, (b,e): data fit after1075

relocalization and (c,f): relocalization gather, it has the same dimension as1076

the shot gather. The first iteration is shown in the first row(a,b,c), and the1077

last iteration is shown in the second (d,e,f). . . . . . . . . . . . . . . . . . . 801078

18 Synthetic and observed shot-gathers as well as the relocalization gathers for1079

the static case. We display the calculated data in a red and blue color scale1080

while the observed data is shown in gray-scale. If solely blue and black are1081

apparent on the wiggles, a good fit is obtained, if the red shows than the fit1082

is not satisfactory. (a,d): Data fit before relocalization, (b,e): data fit after1083

relocalization and (c,f): relocalization gather, it has the same dimension as1084

the shot gather. The first iteration is shown in the first row(a,b,c), and the1085

last iteration is shown in the second (d,e,f). . . . . . . . . . . . . . . . . . . 811086
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19 Adjoint source of the center shot point at the 300th iteration for (a): conven-1087

tional FWI, (b): static receiver extension and (c): time-dependent receiver1088

extension. The same color scale is used for all figures. . . . . . . . . . . . 821089

20 Cost function evolution as a function of iterations, extended-receiver FWI1090

cost is plotted in black and the L2 norm of the data residuals at each itera-1091

tion is shown in red. (a): static extended-receiver FWI, (b): time-dependent1092

extended-receiver FWI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 831093

21 Receiver relocalization as a function of iterations,(a): static extended-receiver1094

FWI, (b): time-dependent FWI. . . . . . . . . . . . . . . . . . . . . . . . 841095

22 Receiver speed as a function of iterations for the time-dependent extended-1096

receiver FWI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 851097

23 Tuning parameter α impact on extended-receiver FWI with static relocal-1098

ization. (a): normalized cost at the last iteration, (b): reconstructed model1099

error, (c): relocalization at the first iteration and (d): relocalization at the1100

last iteration. The lower two panels show plots for the leftmost, center and1101

rightmost shot points. The black labeled circles in (a) and (b) correspond to1102

selected α values, whose corresponding final models are shown in Figure1103

24, where each model label correspond to an α value with the same label. . 861104

24 Tuning parameter α impact on the velocity reconstruction using extended-1105

receiver FWI with static relocalization. (a): α = 0.125, (b): α = 0.333,1106

(c): α = 0.375, (d): α = 0.4167, (e): α = 0.5833 and (f) α = 0.7917.1107

Each sub-figure label corresponds to an α value indicated by black labeled1108

circles in Figure 23a and 23b. . . . . . . . . . . . . . . . . . . . . . . . . . 871109

25 Tuning parameter α impact on extended-receiver FWI with time-dependent1110

relocalization. (a): normalized cost at the last iteration, (b): reconstructed1111

model error, (c): relocalization at the first iteration and (d): relocalization at1112

the last iteration. The lower two panels show plots for the leftmost, center1113

and rightmost shot points. The black labeled circles in (a) and (b) corre-1114

spond to selected α values, whose corresponding final models are shown1115

in Figure 26, where each model label correspond an α value with the same1116

label. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 881117

26 Tuning parameter α impact on the velocity reconstruction using extended-1118

receiver FWI with time-dependent relocalization. (a): α = 0.125, (b):1119

α = 0.333, (c): α = 0.375, (d): α = 0.4167, (e): α = 0.5833 and (f)1120

α = 0.7917. Each sub-figure label corresponds to an α value indicated1121

black labeled circles in Figure 23a and 23b. . . . . . . . . . . . . . . . . . 891122

27 Tuning parameters impact on the (a): cost function at the last iteration,1123

(b): model error and (c,d) receiver relocalization, shown here for (c) the1124

leftmost and (d) the rightmost shot points. . . . . . . . . . . . . . . . . . . 901125
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28 Reconstructed models corresponding to the (a): lowest cost and the (b):1126

lowest model error (Figure 27). . . . . . . . . . . . . . . . . . . . . . . . . 911127

29 True models used to generate the observed data. (a): velocity, (b): density1128

and (c): quality factor. The density and the quality factor in the water layer1129

are 1000 kg.m−3 and 1000, respectively. The color-bars in (b) and (c) are1130

clipped for clarity, therefore, the color in the water layer is not representa-1131

tive of the true values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 921132

30 The observed data computed in a North Sea exploration scale synthetic1133

model, (a) leftmost shot-gather, (b): center shot-gather and (c): rightmost1134

shot-gather. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 931135

31 Starting models. (a): 1D velocity model, (b): density obtained using Gard-1136

ner’s law and (c): quality factor, set to 100 everywhere and 1000 in the1137

water column. he color-bars in (b) and (c) are clipped for clarity, as a re-1138

sult, the color in the water layer is not representative of the true values. . . . 941139

32 Source wavelet estimation in the starting velocity model. (a): source time1140

function, (b): source frequency amplitude spectrum. . . . . . . . . . . . . . 951141

33 Reconstructed velocity models for (a-d) conventional FWI, (e-h) static re-1142

ceiver extension and (i-l): time-dependent receiver extension. This is shown1143

for (a,e,i): 15 iterations, (b,f,j): 110 iterations (c,g,k): 205 iterations and1144

(d,h,l) 300 iterations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 961145

34 Synthetic and observed shot-gathers as well as the relocalization gathers for1146

the static case. We display the calculated data in a red and blue color scale1147

while the observed data is shown in gray-scale. If solely blue and black are1148

apparent on the wiggles, a good fit is obtained, if the red shows than the fit1149

is not satisfactory. (a,d): Data fit before relocalization, (b,e): data fit after1150

relocalization and (c,f): relocalization gather, it has the same dimension as1151

the shot gather. The first iteration is shown in the first row(a,b,c), and the1152

last iteration is shown in the second (d,e,f). . . . . . . . . . . . . . . . . . . 971153

35 Synthetic and observed shot-gathers as well as the relocalization gathers for1154

the static case. We display the calculated data in a red and blue color scale1155

while the observed data is shown in gray-scale. If solely blue and black are1156

apparent on the wiggles, a good fit is obtained, if the red shows than the fit1157

is not satisfactory. (a,d): Data fit before relocalization, (b,e): data fit after1158

relocalization and (c,f): relocalization gather, it has the same dimension as1159

the shot gather. The first iteration is shown in the first row(a,b,c), and the1160

last iteration is shown in the second (d,e,f). . . . . . . . . . . . . . . . . . . 981161

36 Calculated data amplitude spectrum for three cases: time-dependent relo-1162

calization without the second penalty term (β = 0, shown in red) and with1163

the second penalty term (β = 0.001), as well as the static case (β = ∞).1164

The notches in the spectra are caused by the free-surface reflection. . . . . . 991165
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37 Gradient computation with β = 0. (a): adjoint field snapshot at 3.18 s, the1166

extended receiver (adjoint source) is moving to the right causing the Mach1167

cone shape in the wavefield, (b) extended receiver FWI kernel, the receiver1168

positions are shown, the color indicates the receiver speed. . . . . . . . . . 1001169

38 McMC sampling of the inner misfit function, samples of each degree of1170

freedom are cross-plotted against another, the color map indicates the value1171

of the cost function. The plots on the diagonal show the histograms of1172

samples of each degree of freedom. . . . . . . . . . . . . . . . . . . . . . 1011173

39 Cost function values as a function of inner-loop iterations for one receiver.1174

(a): McMC candidates that lower the cost functions are shown in black,1175

PSO global-best cost is shown in green, and Very Fast Simulated Annealing1176

best solutions are shown in magenta. (b): the personal-best cost function1177

of few particles as a function of iterations. . . . . . . . . . . . . . . . . . . 1021178
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For Peer Review
Figure 1: Receiver extension illustration. (a) Acquisition setup, the source is shown as
a black star, the receiver position as a red triangle, and the extended receiver in blue, (b)
observed trace (black dashed line), calculated trace (red solid line), and calculated trace
extracted at the extended receiver position (blue solid line).
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Figure 2: Illustration of the receiver-extension misfit function. (a) Misfit function 2D view
as a function of velocity and receiver relocalization. The minimum is shown in white, the
misfit values corresponding to the receiver-extension are shown in a red dashed line. The
dashed magenta line indicates the velocity value at which the calculated data in Figure 1 are
computed. (b) Misfit function profile along the zero-relocalization (conventional L2 misfit)
in a solid black line, misfit function profile along the minimum value over the receiver
relocalization ∆xs,r in a dashed red line.
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Figure 3: Experimental setup (a): true velocity model, (b): the starting model used for
gradient illustration hereafter.
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Figure 4: Observed and calculated data, as well as relocalization time profiles for: (a)
conventional FWI, (b): static relocalization and (c): time-dependent relocalization.
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Figure 5: FWI kernels and adjoint sources for (a,d): conventional FWI, (b,e): static re-
localization and (c,f): time-dependent relocalization. The yellow arrow indicates the first
Fresnel zone, the blue indicates the rabbit-ears and the red arrows show the migration
isochrones.
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Figure 6: Time-dependent parametrization example, using three segments with first order
Lagrange polynomials. The circles indicate the control points ai.
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Figure 7: Simple reflection case analysis with receiver extension. The geometry is shown
in (a), the original and extended receiver positions shown as a black, and white inverted
triangles, respectively. ∆x and ∆z are the horizontal and vertical receiver relocalizations.
The possible receiver relocalizations at different velocities for the reflection and transmis-
sion cases are shown in (b) and (c), respectively.
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Figure 8: Data fit and relocalization profiles for a two arrivals case using a a lower top layer
starting velocity. (a): Time-dependent horizontal relocalization, and (b): time-dependent
relocalization with both vertical and horizontal components. The observed trace is shown in
a black dashed line, the calculated is shown in a blue solid line, the horizontal relocalization
is shown in a red solid line, and the vertical in a purple solid line.
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Figure 9: A North Sea exploration scale synthetic model, (a): true model, (b): starting
model obtained by Gaussian smoothing of the true model.
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Figure 10: Inner-loop illustration, (a): misfit function map, using one segment and two
control points, the global minimum is shown as a red star. (b): A cross section following the
black line in (a). Note how close are the values of the global minimum (red vertical dashed
line), and the secondary minimum (blue vertical dashed line). (c): the observed shown in a
black dashed line, calculated in a red solid line and the extended data corresponding to the
global minimum shown in a blue solid line.
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Figure 11: PSO example showing the swarm configuration at different iterations superim-
posed on the misfit map, the personal best positions are shown in cyan and the global best
in magenta, the global solution (obtained with grid-search) is shown as a red star.
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Figure 12: Global best normalized cost as a function of the number of iterations using 16,
32 and 64 particles.
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Figure 13: A North Sea exploration scale synthetic model. (a): true model used to generate
the observed data, (b): the starting model.

76

Page 76 of 105GEOPHYSICS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
Figure 14: The source wavelet used for the numerical experiment. (a): time-domain (b):
frequency domain.
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Figure 15: Reconstructed velocity models after 300 iterations. (a): conventional FWI, (b):
static extended-receiver FWI and (c): time-dependent extended-receiver FWI.
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Figure 16: Receiver relocalization as a function of iterations,(a): static extended-receiver
FWI, (b): time-dependent FWI
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Iteration 1

Iteration 300

Figure 17: Synthetic and observed shot-gathers as well as the relocalization gathers for
the static case. We display the calculated data in a red and blue color scale while the
observed data is shown in gray-scale. If solely blue and black are apparent on the wiggles,
a good fit is obtained, if the red shows than the fit is not satisfactory. (a,d): Data fit before
relocalization, (b,e): data fit after relocalization and (c,f): relocalization gather, it has the
same dimension as the shot gather. The first iteration is shown in the first row(a,b,c), and
the last iteration is shown in the second (d,e,f).
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Iteration 1

Iteration 300

Figure 18: Synthetic and observed shot-gathers as well as the relocalization gathers for
the static case. We display the calculated data in a red and blue color scale while the
observed data is shown in gray-scale. If solely blue and black are apparent on the wiggles,
a good fit is obtained, if the red shows than the fit is not satisfactory. (a,d): Data fit before
relocalization, (b,e): data fit after relocalization and (c,f): relocalization gather, it has the
same dimension as the shot gather. The first iteration is shown in the first row(a,b,c), and
the last iteration is shown in the second (d,e,f).
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Figure 19: Adjoint source of the center shot point at the 300th iteration for (a): conventional
FWI, (b): static receiver extension and (c): time-dependent receiver extension. The same
color scale is used for all figures.
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Figure 20: Cost function evolution as a function of iterations, extended-receiver FWI cost
is plotted in black and the L2 norm of the data residuals at each iteration is shown in red.
(a): static extended-receiver FWI, (b): time-dependent extended-receiver FWI.
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Figure 21: Receiver relocalization as a function of iterations,(a): static extended-receiver
FWI, (b): time-dependent FWI.
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Figure 22: Receiver speed as a function of iterations for the time-dependent extended-
receiver FWI.
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Figure 23: Tuning parameter α impact on extended-receiver FWI with static relocalization.
(a): normalized cost at the last iteration, (b): reconstructed model error, (c): relocalization
at the first iteration and (d): relocalization at the last iteration. The lower two panels show
plots for the leftmost, center and rightmost shot points. The black labeled circles in (a) and
(b) correspond to selected α values, whose corresponding final models are shown in Figure
24, where each model label correspond to an α value with the same label.
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Figure 24: Tuning parameter α impact on the velocity reconstruction using extended-
receiver FWI with static relocalization. (a): α = 0.125, (b): α = 0.333, (c): α = 0.375,
(d): α = 0.4167, (e): α = 0.5833 and (f) α = 0.7917. Each sub-figure label corresponds
to an α value indicated by black labeled circles in Figure 23a and 23b.
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Figure 25: Tuning parameter α impact on extended-receiver FWI with time-dependent
relocalization. (a): normalized cost at the last iteration, (b): reconstructed model error, (c):
relocalization at the first iteration and (d): relocalization at the last iteration. The lower
two panels show plots for the leftmost, center and rightmost shot points. The black labeled
circles in (a) and (b) correspond to selected α values, whose corresponding final models
are shown in Figure 26, where each model label correspond an α value with the same label.
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Figure 26: Tuning parameter α impact on the velocity reconstruction using extended-
receiver FWI with time-dependent relocalization. (a): α = 0.125, (b): α = 0.333, (c):
α = 0.375, (d): α = 0.4167, (e): α = 0.5833 and (f) α = 0.7917. Each sub-figure label
corresponds to an α value indicated black labeled circles in Figure 23a and 23b.
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Figure 27: Tuning parameters impact on the (a): cost function at the last iteration, (b):
model error and (c,d) receiver relocalization, shown here for (c) the leftmost and (d) the
rightmost shot points.

90

Page 90 of 105GEOPHYSICS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
Figure 28: Reconstructed models corresponding to the (a): lowest cost and the (b): lowest
model error (Figure 27).
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Figure 29: True models used to generate the observed data. (a): velocity, (b): density and
(c): quality factor. The density and the quality factor in the water layer are 1000 kg.m−3

and 1000, respectively. The color-bars in (b) and (c) are clipped for clarity, therefore, the
color in the water layer is not representative of the true values.
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Figure 30: The observed data computed in a North Sea exploration scale synthetic model,
(a) leftmost shot-gather, (b): center shot-gather and (c): rightmost shot-gather.
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Figure 31: Starting models. (a): 1D velocity model, (b): density obtained using Gardner’s
law and (c): quality factor, set to 100 everywhere and 1000 in the water column. he color-
bars in (b) and (c) are clipped for clarity, as a result, the color in the water layer is not
representative of the true values.
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Figure 32: Source wavelet estimation in the starting velocity model. (a): source time
function, (b): source frequency amplitude spectrum.
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Figure 33: Reconstructed velocity models for (a-d) conventional FWI, (e-h) static receiver
extension and (i-l): time-dependent receiver extension. This is shown for (a,e,i): 15 itera-
tions, (b,f,j): 110 iterations (c,g,k): 205 iterations and (d,h,l) 300 iterations.
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Iteration 1

Iteration 300

Figure 34: Synthetic and observed shot-gathers as well as the relocalization gathers for
the static case. We display the calculated data in a red and blue color scale while the
observed data is shown in gray-scale. If solely blue and black are apparent on the wiggles,
a good fit is obtained, if the red shows than the fit is not satisfactory. (a,d): Data fit before
relocalization, (b,e): data fit after relocalization and (c,f): relocalization gather, it has the
same dimension as the shot gather. The first iteration is shown in the first row(a,b,c), and
the last iteration is shown in the second (d,e,f).
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Iteration 1

Iteration 267

Figure 35: Synthetic and observed shot-gathers as well as the relocalization gathers for
the static case. We display the calculated data in a red and blue color scale while the
observed data is shown in gray-scale. If solely blue and black are apparent on the wiggles,
a good fit is obtained, if the red shows than the fit is not satisfactory. (a,d): Data fit before
relocalization, (b,e): data fit after relocalization and (c,f): relocalization gather, it has the
same dimension as the shot gather. The first iteration is shown in the first row(a,b,c), and
the last iteration is shown in the second (d,e,f).
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Figure 36: Calculated data amplitude spectrum for three cases: time-dependent relocaliza-
tion without the second penalty term (β = 0, shown in red) and with the second penalty
term (β = 0.001), as well as the static case (β =∞). The notches in the spectra are caused
by the free-surface reflection.
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For Peer ReviewFigure 37: Gradient computation with β = 0. (a): adjoint field snapshot at 3.18 s, the
extended receiver (adjoint source) is moving to the right causing the Mach cone shape in
the wavefield, (b) extended receiver FWI kernel, the receiver positions are shown, the color
indicates the receiver speed.
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Figure 38: McMC sampling of the inner misfit function, samples of each degree of freedom
are cross-plotted against another, the color map indicates the value of the cost function. The
plots on the diagonal show the histograms of samples of each degree of freedom.
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Figure 39: Cost function values as a function of inner-loop iterations for one receiver. (a):
McMC candidates that lower the cost functions are shown in black, PSO global-best cost is
shown in green, and Very Fast Simulated Annealing best solutions are shown in magenta.
(b): the personal-best cost function of few particles as a function of iterations.
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α,β 0.0003 0.0005 0.0008 0.001 0.002 0.005 0.0075 0.01 0.025 0.05
β 0.0025 0.005 0.0075 0.01 0.025 0.0500 0.075 0.1 0.25 0.75 1. 1.25

Table 1: α and β values we use for the parametric study. The first row shows the values
considered for both α and β, while the second row shows the additional values we test only
for β.
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Forward Inner loop Inner loop per receiver Adjoint simulation+
gradient summation

Conventional FWI 17.6 - - 66.4
Static 21.9 2.1 1.4× 10−2 70.2

Time-dependent 22.1 53.7 0.3 74.6

Table 2: CPU times in seconds for the different steps of the computation.
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